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Abstract

Salting and smoking are ancient processes for fish preservation. The effects of salt and phenolic smoke compounds on the growth rate of L.

monocytogenes in cold-smoked salmon were investigated through physico-chemical analyses, challenge tests on surface of cold-smoked salmon at

4 -C and 8 -C, and a survey of the literature. Estimated growth rates were compared to predictions of existing secondary models, taking into

account the effects of temperature, water phase salt content, phenolic content, and additional factors (e.g. pH, lactate, dissolved CO2). The

secondary model proposed by Devlieghere et al. [Devlieghere, F., Geeraerd, A.H., Versyck, K.J., Vandewaetere, B., van Impe, J., Debevere, J.,

2001. Growth of Listeria monocytogenes in modified atmosphere packed cooked meat products: a predictive model. Food Microbiology 18, 53–

66.] and modified by Giménez and Dalgaard [Giménez, B., Dalgaard, P., 2004. Modelling and predicting the simultaneous growth of Listeria

monocytogenes and spoilage micro-organisms in cold-smoked salmon. Journal of Applied Microbiology 96, 96–109.] appears appropriate.

However, further research is needed to understand all effects affecting growth of L. monocytogenes in cold-smoked salmon and to obtain fully

validated predictive models for use in quantitative risk assessment.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Fishery products; L. monocytogenes; Predictive microbiology; Microbial exposure assessment; Validation criteria; Phenolic compounds

1. Introduction

Numerous recent or in-process risk assessments have

concerned Listeria monocytogenes in sliced and vacuum

packed cold-smoked salmon (Buchanan, 1997; Lindqvist and

Westöö, 2000; FSANZ, 2002; Beaufort et al., 2002; FDA,

2003; FAO/WHO, 2004). This abundance is clearly justified

by the sanitary and economic importance of this issue, but it

may also be explained by the relatively good availability of

data. L. monocytogenes is indeed a well known foodborne

pathogen which has been extensively studied since the first

major recognised outbreak in the early 1980s (Schlech et al.,

1983). Presence and potential growth of this pathogen in

cold-smoked salmon has been widely reviewed (Ben

Embarek, 1994; Rorvik, 2000; Ross et al., 2000). However,

as noted in most risk assessment reports, there are still

research needs to better characterize the contamination data

and to improve and validate the tools of predictive

microbiology to predict growth of L. monocytogenes in

cold-smoked salmon.

Predictive microbiology aims to predict microbial behav-

iour in food over time as a function of different influencing

parameters. For a review of such models, see McKellar and

Lu (2003). Briefly, primary models describe the evolution of

a population of microorganisms over time under certain

conditions whereas secondary models describe how the

primary model parameters, e.g. the lag time (lag) and the

growth rate (lmax), vary with environmental conditions.

They are typically based on data generated in liquid
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laboratory culture media, whereas they aim to predict growth

in food products. Validation is then an important issue.

Model validation can be defined as demonstrating the

accuracy of the model for a specified use. Ross (1996)

and Baranyi et al. (1999) proposed criteria to measure the

performance of a model, i.e. their reliability when compared

to independent ‘‘real-world’’ data, obtained in inoculated

food products (challenge tests) or even in naturally contam-

inated products (storage trials), and not used to generate the

model.

Dalgaard and Jorgensen (1998) provided an extensive

comparison of existing secondary models for L. monocyto-

genes, on the basis of 100 literature challenge tests in

different seafood products (including 26 in cold-smoked

salmon) and 13 storage trials in cold-smoked salmon. As

stated by the authors, one of the limitations was that the

inhibiting effect of smoke components was not taken into

account, both because no adequate secondary model was

available at that time and because the concentration of smoke

components was not measured in products used for challenge

tests. The antimicrobial activity of smoke is generally

attributed to the phenolic fraction, even if no relationship

between concentration of phenolic compounds and growth

inhibition has clearly been established (Thurette et al., 1998;

Niedziela et al., 1998; Suñen et al., 2001, 2003; Lebois et al.,

2004). Since this study, Augustin and Carlier (2000a,b) have

proposed two secondary models taking into account the

phenolic content, and Giménez and Dalgaard (2004) have

modified two other secondary models to include this phenolic

effect.

The objective of the present study was (i) to further

investigate the physicochemical characteristics of cold-

smoked salmon, including the phenolic content, on the basis

of a specific survey, and of former similar studies (Leroi et

al., 2001; Espe et al., 2004), and (ii) to characterize how they

affect growth of L. monocytogenes, on the basis of specific

challenge tests and of literature data (Peterson et al., 1993;

Pelroy et al., 1994; Rosso et al., 1996; Niedziela et al., 1998;

Giménez and Dalgaard, 2004; Lakshmanan and Dalgaard,

2004). The four recently proposed secondary models, taking

into account the concentration of phenolic compounds

(Augustin and Carlier, 2000a,b; Giménez and Dalgaard,

2004) and 7 additional secondary models, were compared

and evaluated.

2. Materials and methods

2.1. Physicochemical analyses of French commercial products

Eight French companies each provided five randomly

sampled commercial products, which were received frozen

and vacuum-packaged. Water, salt and phenolic contents and

pH were measured, according to procedures described by Leroi

et al. (2000, 2001). Salt contents (in g/100 g) were divided by

water contents to obtain water phase salt (WPS) in g/100 ml.

Similar results published by Leroi et al. (2001) and Espe et

al. (2004) are also presented. Statistical t-tests were performed

to compare the new results with the previous ones of Leroi et

al. (2001), with a =0.05.

2.2. Challenge tests (L. monocytogenes) in 5 specific products

Five French companies were asked to produce a specific

batch of cold-smoked salmon, achieving realistic physico-

chemical goals (high, medium or low levels of smoking and

salting). The five batches were denoted A to E. Three

batches (A, B, C) had been manually dry-salted, one batch

(E) had been mechanically dry-salted, whereas batch D

underwent both a mechanic dry salting and injection. Only

salt was added to the raw fish (i.e. no nitrites, no sugar).

They all had been cold-smoked (A: 22–24 -C, B: 23 -C,
C: not communicated, D: 25–27 -C, E: 24–26 -C) in

kilns, using either beech wood (batches A, B, D, E), or a

mixture of woods, including mostly beech and oak (batch

C). Batches A and C were produced in artisanal plants,

whereas batches B, D, and E were produced in industrial

plants. Samples were received from the plants frozen and

vacuum-packaged.

For each batch, two 20-slice sub-batches were thawed

overnight at 2 -C and an 89-mm-diameter disk was excised

from each fish slice. Weights of the disks ranged from 15 g to

20 g. The disks of one sub-batch were further inoculated with

L. monocytogenes and used for a challenge test at 4 -C, while
non-inoculated off-cuts of the same sub-batch were used for a

storage trial at 4 -C, whereas the disks and off-cuts of the

other sub-batch were used for a challenge test and a storage

trial at 8 -C. Last, all remaining off-cuts of one batch were

pooled and the pool was analysed for pH, salt content, and

phenolic compounds according to the procedures detailed

above. This pooling was chosen to reach some confidence in

estimating the average physicochemical characteristics of each

batch, but did not enable us to observe any within-batch

physicochemical variability (neither between the sub-batches,

nor within a sub-batch).

Strain TQA 061, isolated in the laboratory from commercial

cold-smoked salmon, and stored at �24 -C in a glycerol-

containing medium, was used for inoculation of the disks. Prior

to challenge testing, the content of one cryotube was thawed,

and it was 1/100 diluted in tryptone soya broth (AES,

Combourg, France) and cultured 4 days at 10 -C. This first

preculture in early stationary phase was 1/100 diluted in

tryptone soya broth and cultured 3 days at 10 -C. This second
preculture in early stationary phase was 1/1000 diluted in

tryptone salt (AES), to obtain the inoculum suspension, at a

level of 2.106 cfu per millilitre. A 0.1-ml volume of this

inoculation suspension was spread onto each disk, which was

then folded, so that the inoculum was sandwiched between the

two layers. The folded disks were vacuum-packaged, using a

chamber machine Multivac A300/16 (Multivac, Lagny-sur-

Marne, France), in polyamide/polyethylene (PA/PE) 30 Am/70

Am film (Euralpack, Saint Pierre du Perray, France), with low

transmission rates: 30–40 cm3 m�2 day�1 bar�1 for O2 (23

-C, 75% relative humidity), 90 cm3 m�2 day�1 bar�1 for CO2

(23 -C, 75% relative humidity), 2.5 g m�2 day�1 for H2O (23

M. Cornu et al. / International Journal of Food Microbiology 106 (2006) 159–168160
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-C, 85% relative humidity). For each batch, twenty inoculated

89-mm disks were stored at 4T1 -C, whereas the twenty other

disks were stored at 8 -CT1 -C, with continuous temperature

monitoring. After various intervals up to 55 days, packages

were 1/10 diluted in tryptone salt, and homogenized with a

stomacher. L. monocytogenes was enumerated by plating onto

Palcam agar (AES) appropriate dilutions of the disks in

tryptone salt. Plates were incubated 48T2 h at 37T1 -C. Cell
counts were calculated per square centimetre of salmon

surface, so that population densities of L. monocytogenes were

expressed as log cfu/cm2. The theoretical initial contamination,

calculated from the contamination level for the inoculation

suspension, is 3.5 log cfu/cm2, which is approximately

equivalent to 4 log cfu/g.

2.3. Storage trials (naturally occurring food flora) in the same

5 products

To study the growth of the mesophilic food flora, storage

trials of each batch were performed. From the non-inoculated

crushed off-cuts of each batch, thirty-six 10-g packs were

weighted, and vacuum-packaged (as described above). Then

eighteen 10-g packs were stored up to 55 days at 4 -C, and
eighteen 10-g packs were stored up to 25 days at 8 -C. After
various intervals, packs were 1/10 diluted in tryptone salt,

and homogenized with a stomacher. The mesophilic food

flora was enumerated by plating onto Plate Count Agar

(AES) appropriate dilutions of the packs in tryptone salt.

Plates were incubated 3 days at 30 -C. Cell counts were

expressed as log cfu/g.

2.4. Estimation of growth rates

Each L. monocytogenes growth curve was fitted by the

model of Baranyi and Roberts (1994) and by the embedded

model without lag-phase, using least-squares nonlinear regres-

sion. An F-test was performed to compare both models, with

a =0.05. In all cases but one (Batch E, 8 -C), the lag time was

not significant and the model without lag phase was then

selected. This is easily explained by the history of the strain, as

the preculture temperature was 10 -C. The parameters of the

chosen model were also estimated using robust nonlinear

regression, as detailed in Miconnet et al. (2005). All calcula-

tions were performed with the software Matlab 6.5 (Math-

Works).

When it was appropriate, the same estimation was

performed for the food flora, obtained through storage

trials.

To validate the secondary models, additional growth rates

of L. monocytogenes were obtained from published challenge

tests. Only products in which the phenolic content was either

null or measured were selected. Growth rates in cold-smoked

salmon estimated by Giménez and Dalgaard (2004) and

Lakshmanan and Dalgaard (2004) were used as published by

the authors. Published graphs in smoked salmon (Rosso et

al., 1996), and in cold-process (not smoked) salmon

(Peterson et al., 1993; Pelroy et al., 1994; Niedziela et al.,

1998) were scanned and individual points digitalised. Growth

rates were estimated using the same procedure as previously

described.

2.5. Prediction of L. monocytogenes growth rates using

secondary models

Four secondary models, taking into account at least the

effects of temperature, water activity (calculated from the NaCl

content) and phenolic content, were used for predictions:

& Model 1, a cardinal model developed by Augustin and

Carlier (2000a) on the basis of 1437 literature growth rates,

both in broth and in challenge tests;

& Model 2, a cardinal model including interactions between

factors (Augustin and Carlier, 2000b), based on the same

data set;

& Model 3, a square-root model, developed by Tom Ross,

used by FAO/WHO (2004), and modified by Giménez and

Dalgaard (2004) to take into account the phenolic effect;

& Model 4, a square-root model, developed by Devlieghere et

al. (2001) and similarly modified by Giménez and Dalgaard

(2004).

Additional models, not taking into account the phenolic

content, were also considered to calculated the validation

criteria:

& Models 1V, 2V, 3V and 4V, similar to models 1, 2, 3, and 4,

without the phenolic effect;

& Model 5, a polynomial model, based on growth curves in

broth, used in Pathogen Modelling Program, a software

developed by USDA (2001);

& Model 6, a polynomial model, based on growth curves in

broth, used in Growth Predictor, a software developed by

IFR (2004);

& Model 7, a square-root model, developed by FDA (2003) on

the basis of 29 literature growth curves in smoked fishery

products, not taking into account the physicochemical

factors.

Models were applied as originally defined by their authors.

The water activity, aw, was calculated from WPS by the

equation used by Augustin and Carlier (personal communica-

tion) and Giménez and Dalgaard (2004):

aw ¼ 1� 0:0052471WPS� 0:00012206WPS2 ð1Þ

When needed in the model and not measured, the water-

phase lactate (WPL) level of cold-smoked salmon was

assumed to be 90 mM (Tienungoon et al., 2000), which is

equivalent to a concentration of sodium lactate (NaL) at 1%.

All other concentrations of inhibiting compounds (including

dissolved CO2) were assumed to be null. As Model 7

provides a distribution of predicted growth rates at each

temperature, the average of the distribution was chosen for

validation.
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2.6. Validation criteria

Two criteria, proposed by Ross (1996), were used to

compare these models:

˝ the accuracy factor, which expresses the accuracy of the

model predictions (1 if all predictions are equal to the

observations),

˝ the bias factor, which expresses the overall bias (>1 for a

fail-safe model, <1 for a fail-dangerous model, 1 for an

unbiased model).

The null growth rates predicted by models 1 and 2 were by

convention replaced by 0.01 day�1, to obtain numerical values

of the validation criteria.

3. Results and discussion

3.1. Physicochemical characteristics

Forty French commercial products were surveyed and

analysed for pH, salt contents, water contents, water-phase

salt contents, and phenolic contents (see Table 1). Results were

compared with those of Leroi et al. (2001), on 13 French

commercial products, supposed to be representative of the

French traditional production and Espe et al. (2004), on 48

French commercial products, produced by four commercial

smoking-houses. Water and salt contents were very similar

with those observed by Leroi et al. (2001). Significant

differences were observed between both studies regarding

two factors: pH and phenolic contents. Indeed, Leroi et al.

(2001) measured ‘‘initial’’ pH in early shelf life, whereas pH-

values were measured later in the shelf life in the present study,

which may explain the slightly lower results. Last, Leroi et al.

(2001) observed lower phenolic contents, as low as 0.27 mg/

100 g, and none above 1.1 mg/100 g. This difference may be

explained by an unexpected sampling or experimental bias or

could reflect a recent evolution of the French market. Statistical

comparisons could not be performed using results of Espe et al.

(2004), as raw results had not been published, but results

appeared close to the ones of the present survey.

The measured physicochemical characteristics of the 5

specific products used for challenge tests (see Table 1) were

all within the ranges of those of the commercial products (at

least from one of the three surveys, see Table 1). However, one

batch (C) appeared relatively lightly salted. The phenolic

contents of two batches (B and E) were relatively low, whereas

batch A had a relatively high phenolic content (2 mg/100 g).

Last, the initial pH values were similar to those of Leroi et al.

(2001).

3.2. Growth of L. monocytogenes in specific products

For each batch A to E, two challenge tests were performed:

one at 4 -C and the other one at 8 -C. Fig. 1 presents the ten

observed growth curves of L. monocytogenes. It has to be

underlined that such growth curves were obtained under

particular laboratory conditions (specific products, high inoc-

ulum levels, preculture in culture broth, etc.) and do not aim to

simulate realistic natural contamination. Indeed, storage trials,

monitoring of naturally contaminated products, are the only

experiments that really enable us to fully describe this state of

natural contamination. Concerning specifically the growth rate

(lmax), it is usually accepted that challenge tests, whatever the

inoculum level, are an adequate and useful approximation of

storage trials, whereas it is far more discussed for the two other

parameters of primary growth models, the lag time (lag) and

the maximum population density (MPD or Nmax). For a further

discussion of this, see Gnanou Besse et al. (submitted for

publication).

Table 1

Physicochemical characteristics (pH, salt content, water-phase salt content calculated from salt and water contents, and phenolic content) of cold-smoked salmon

pH Salt content

(g/100 g)

WPS

(g/100 ml)

Water

content

P=phenolic content

(mg/100 g)

40 commercial French products (present survey)

Mean (SD) 6.02 (0.09) 2.85 (0.65) 4.62 (0.96) 61.3 (3.57) 0.99 (0.30)

[Min–Max] [5.80–6.24] [1.60–4.10] [2.74–7.12] [53.1–68.7] [0.55–1.65]

13 commercial French products (Leroi et al., 2001)

Mean (SD) 6.20 (0.07) 3.13 (0.56) 5.18 (0.90) 60.5 (3.08) 0.55 (0.26)

[Min–Max] [6.09–6.30] [2.21–4.29] [3.76–7.19] [57.3–68.0] [0.27–1.08]

48 commercial French products (Espe et al., 2004)

Mean (SD) n.d. 2.62 (nd) n.d. 62.5 (nd) 0.88 (nd)

[Min–Max] [1.3–3.4] [57.7–66.7] [0.3–2.1]

5 specific batches, used for challenge tests:

A 6.20 2.70 4.82 56.3 2.00

B 6.20 3.90 6.20 62.9 0.51

C 6.20 1.40 2.31 60.9 0.97

D 6.20 3.70 6.82 54.4 1.45

E 6.10 3.20 5.73 56.1 0.51

For the present survey (40 French commercial products) and the survey of Leroi et al. (2001), mean, standard deviation, and extreme values are shown. Individual

results are presented for the five specific batches (labelled A to E) used for challenge tests.
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These extreme physico-chemical conditions of batches A to

E were intentionally selected to better characterize the effects

of salting and smoking on the growth rate of L. monocytogenes

at two temperatures. In one combination (batch A, 4 -C), less

than three generations of L. monocytogenes were observed

within 55 days. At 8 -C, this highly smoked batch was

associated to the slowest growth. These results confirm that the

impact of phenolic compounds at a very high level, 2 mg/100

g, superior to the levels usually encountered on the market.

These growth curves were modelled by a primary model,

using the classical least-squares criterion or an alternative

robust criterion. Results of the two methods were close (Table

2) and those of the classical least-squares regression were used

for further discussion.

The similarity of growth rates at 4 -C and 8 -C of batch B

was unexpected. This unexpected result might be (at least

partly) due to estimation uncertainty. Note that the obtained

growth curves, both at 4 -C and 8 -C, are far from ideal

exponential growth curves. The uncertainty on the estimation

of growth rates is then high. As discussed in Miconnet et al.

(2005), surface growth curves are often less satisfactory than

crushed growth curves, due to an heterogeneity between packs,

which are not homogenised in the 1st case, whereas they are in

the latter case.

This unexpected result of batch B could also be explained

by the within-batch variability. Indeed, there could have

been a difference between the sub-batch used for the growth

curve at 4 -C and the sub-batch used for the growth curve

at 8 -C.
Moreover, at 4 -C, the growth rate in batch B is higher than

in batch E, and the opposite is observed at 8 -C, whereas
batches B and E have similar physicochemical characteristics.

This may be explained by the estimation uncertainty discussed

above. It also illustrates the fact that the measured physico-

chemical characteristics probably do not account for all the

between-batches and within-batch variability.
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Fig. 1. Growth curves of L. monocytogenes on cold-smoked salmon (log cfu/

cm2), after surface-contamination of batches A (A) to E (E). Experimental

results (grey squares: 4 -C, black squares: 8 -C) were fitted by least-squares

regression with the selected primary model without lag (grey solid line: 4 -C,

black solid line: 8 -C), and the Baranyi model (black dotted line) for one curve

(batch E, 8 -C).

Table 2

Estimated and predicted growth rates (day�1) of L. monocytogenes on cold-

smoked salmon at 4 -C and 8 -C

Conditions

batch, temp.

Estimated growth

rates (day�1)

Predicted growth rates (day�1)

least-squares Robust Model 1 Model 2 Model 3 Model 4

A, 4 -C 0.02 0.01 0 0 0.06 0.13

B, 4 -C 0.50 0.48 0.12 0 0.14 0.29

C, 4 -C 0.31 0.35 0.04 0 0.18 0.40

D, 4 -C 0.29 0.31 0 0 0.07 0.15

E, 4 -C 0.27 0.27 0.13 0 0.14 0.32

A, 8 -C 0.27 0.30 0 0 0.31 0.30

B, 8 -C 0.49 0.49 0.29 <0.01 0.72 0.67

C, 8 -C 1.00 1.04 0.09 <0.01 0.93 0.94

D, 8 -C 0.80 0.79 0 0 0.38 0.35

E, 8 -C 1.63a 1.63 0.32 <0.01 0.74 0.74

Estimations were obtained fitting each growth curve using the chosen model

(see Fig. 1) and non-linear least-squares and robust regression (Miconnet et al.,

2005). Predictions were obtained using four secondary models, and the

physico-chemical characteristics of each product (see Table 1). Model 1:

Augustin and Carlier (2000a). Model 2: Augustin and Carlier (2000b). Model

3: Ross (FAO/WHO, 2004), modified by Giménez and Dalgaard (2004). Model

4: Devlieghere et al. (2001), modified by Giménez and Dalgaard (2004).
a The estimation of 1.63 day�1 for batch E at 8 -C is obtained with the 4-

parameter Baranyi model. With a null lag time, the estimated growth rate is

0.92 day�1.
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3.3. Growth of the food flora in specific products

Fig. 2 presents the growth curves of the mesophilic food

flora in storage trials at 4 -C and 8 -C. The two artisanal

batches, denoted A and C, had relatively high initial plate

count numbers. It was then possible to estimate, at least

roughly, the growth rates of the mesophilic food flora. This

estimation is very approximate, as storage trials are less

appropriate than challenge tests for such fittings. Moreover the

growth rate is usually defined for a single species, whereas it is

used in this case for a mixture of species. The least-squares

estimations were 0.27 day�1 (batch A, 4 -C), 0.58 day�1

(batch A, 8 -C), 0.96 day�1 (batch C, 4 -C), and 0.86 day�1

(batch C, 8 -C). The robust estimations were close: 0.27 day�1

(batch A, 4 -C), 0.63 day�1 (batch A, 8 -C), 0.91 day�1

(batch C, 4 -C), and 0.89 day�1 (batch C, 8 -C). The fact that
the growth is at both temperatures faster in the lightly salted

batch C than in the heavily smoked batch A can easily be

explained by the physicochemical difference between the two

sub-batches. Indeed, most indigenous microbial flora are

probably, at least partly, inhibited by salt and phenolic

compounds. On the contrary, it was less expected that the

microbial growth in batch C at 4 -C could be as fast (or even

faster) than at 8 -C in the same batch. This might be partly

explained by the hypothesis that some species present in the

cold-smoked salmon could have an optimal temperature close

to these temperatures (but would also be able to form colonies

on PCA at 30 -C in 3 days).

For these two batches, and especially for batch A, the

population levels reached by the food flora in storage trials is

close or even higher than the contamination levels of L.

monocytogenes in challenge tests. Then, it is possible that, in

these two batches, the observed growth of L. monocytogenes

had been influenced by the simultaneous growth of a non-

neglectable or even predominant background flora. It has often

been observed that the major interaction observed in cold-

smoked salmon between the background flora (among which

the lactic acid flora tends to be predominant) and L.

monocytogenes is a competition, the so-called Jameson effect,

with a simultaneous deceleration of all populations (see

Buchanan and Bagi, 1997, 1999; Dalgaard and Jorgensen,

1998; Ross et al., 2000; Cornu, 2001; FAO/WHO, 2004;

Giménez and Dalgaard, 2004; Nilsson et al., 2005). Even if the

data are not appropriate to detect such an effect, the

deceleration of L. monocytogenes at a relatively low level

(ca. 106 cfu/cm2), in batch A at 8 -C, after ca. 20 days, could be
explained by the simultaneous deceleration of the food flora

(observed in storage trials after ca. 17 days at 8 -C).
This Jameson effect only impacts the maximum population

density of L. monocytogenes and not its growth rate, which was

the major focus of this paper. Then, we assume that the

estimations of the growth rates in these batches were not

influenced by the background flora. On the contrary, the

observed maximal population densities observed by L. mono-

cytogenes may be lower than those obtained in absence of this

predominant background flora.

For the three industrial batches, denoted B, D, and E, the

initial population was so low, that most packs could not be

enumerated using standard techniques (with a quantification

threshold at 10 cfu/g). It is then impossible for these batches

to estimate the growth rates. However, in the case of batch B,

it cannot be excluded that the growth at 4 -C could be close
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Fig. 2. Growth curves of the mesophilic food flora in cold-smoked salmon (log

cfu/g), batches A (A) to E (E). Experimental results (grey squares: 4 -C, black
squares: 8 -C) below a limit of quantification are represented at this limit with a

vertical bar. For two batches, A and C, growth curves were fitted by least-

squares regression with the selected primary model without lag (grey solid line:

4 -C, black solid line: 8 -C).

M. Cornu et al. / International Journal of Food Microbiology 106 (2006) 159–168164



- 71 -

to the growth at 8 -C (as enumeration results are similar at

the 18th day). This could confirm that there was a difference

between the physicochemical characteristics of the sub-batch

used at 4 -C and the sub-batch used at 8 -C. This could also

be explained by species with a low optimal temperature, as

for the food flora of batch C discussed above. For these three

batches, L. monocytogenes was strongly predominant in the

challenge tests and we can then exclude that any competition

effect occurred during the experiments. However, as realistic

initial contamination levels of L. monocytogenes are very low

(see Beaufort et al., submitted for publication), competition

should be taken into account when predicting the evolution of

L. monocytogenes in naturally contaminated products, even

for these batches with a relatively initial level in background

flora.

3.4. Comparison and validation of L. monocytogenes second-

ary models

Published secondary models were evaluated in this study.

Predicted growth rates are compared with estimated growth

rates of the present study in Table 2. Predictions of models 1

and 2 were much lower than the observations (i.e. fail-

dangerous). Predictions of models 3 and 4 were more

consistent with estimated growth rates, even if model 3 tended

to be fail-dangerous at 4 -C. The estimated growth rate for

batch E at 8 -C, 1.63 day�1, appears relatively high when

compared with the other estimations and with the predictions.

For this specific growth curve, the lag time was significantly

non-null, but its biological significance can be questioned.

Indeed, with a null lag time, the estimated growth rate is 0.92

day�1, which appears more consistent with the predictions.

This example is an indication that the estimation procedure of

the growth parameters is much more complex in the case of

challenge tests, than in the case of curves in broth.

For the sake of comparison, models 1, 3 and 4 were

rewritten into a unified five-parameter equation:

l ¼ lref I
T � Tminð Þ2
Tref � Tminð Þ2

I
WPS�WPSmaxð Þ þ 0:02326 WPS2 �WPS2max

� �

WPSref �WPSmaxð Þ þ 0:02326 WPS2ref �WPS2max

� �

I
Pmax � Pð Þk
Pmax � Prefð Þk ð2Þ

where Tmin is the minimal temperature, WPSmax is the MIC-

value for WPS, calculated from the minimal aw of each model,

using Eq. (1), Pmax is the phenolic MIC-value, k equals 1 or 2,

and lref is the predicted growth rate for a reference cold-

smoked salmon at a reference temperature, i.e. the prediction of

the model for the following conditions: T =Tref = 5 -C;
pH=6.20; WPSref=5.0%; P=Pref=1.0 mg/100 g=10 ppm;

WPL=8000 ppm=90 mM, corresponding to NaL=1%;

CO2diss=0 ppm.

The reference values for pH, WPS and P, were arbitrarily set

at rounded average values (see Table 1), whereas the choice of

the reference value for lactate concentrations was based on

Tienungoon et al. (2000).

Table 3 presents the parameters of Models 1, 3 and 4. Model

2 could not be rewritten in such a unified form, moreover it

predicts a null growth rate for the reference cold-smoked

salmon at the reference temperature. This presentation was

conceived to compare models. Thus, the very low phenolic

MIC-value (Pmax) of model 1 is sufficient to explain why

model 1 was highly fail-dangerous in smoked products,

whereas it was much more appropriate and even slightly fail-

safe in nonsmoked products, in which the phenolic effect was

not modelled. The minimal temperature of model 3, +0.88 -C,
appears relatively high, which may explain why this model

behaves better at 8 -C than at 4 -C.
Eq. (2) was also designed to enhance simpler use of these

models. When no information concerning the salt content is

available, the term describing its effect can simply be omitted.

The water phase salt content is then assumed to be 5%.

Similarly, if the term describing the effect of phenol is omitted,

the phenolic content is assumed to be 1 mg/100 g.

Table 4 presents the validation criteria based on different

sets of growth rates: the 10 challenge tests on cold-smoked

salmon of the present study, the 9 challenge tests on/in cold-

smoked salmon taken from literature, and the 22 challenge tests

in cold-process nonsmoked salmon. Eleven secondary models

were tested. Among the four models taking into account the

phenolic effect, model 4 was the most accurate model (lowest

Af-value) on each data set. It was slightly biased, in a fail-safe

way, (Bf >1) but such a bias is usually preferred to a fail-

dangerous bias. Model 4 is then a good candidate to take into

account the effect of all physicochemical factors, including the

phenolic content, on growth rates of L. monocytogenes.

However, satisfactory validation criteria were also obtained

with some other models, especially with model 7. As this

model was directly built from growth rates estimated in

challenge tests, Bf-values close to 1.0 were expected and were

indeed obtained. More surprisingly, the Af-values obtained

with this approach, in which only the temperature effect was

modelled, were close or better than the Af-values obtained with

models taking into account the physicochemical factors, such

as model 4.

Thus, the described between-product physicochemical

variability does not appear sufficient to fully explain the

between-curve variability of growth rates. Our description of

the between-product physicochemical variability may be

Table 3

Parameters of three models in a unified and simplified equation (see Eq. (2) in

the text)

Parameters Model 1 Model 3 Model 4

lref (day
�1) 0.03 0.23 0.43

Tmin (-C) �2.7 0.9 �3.5

WPSmin (g/100 mL) 13.1 11.6 10.7

Pmax (mg/100 g) 1.25 2.81 2.81

k 2 1 1

Model 1: Augustin and Carlier (2000a). Model 3: Ross (FAO/WHO, 2004),

modified by Giménez and Dalgaard (2004). Model 4: Devlieghere et al. (2001),

modified by Giménez and Dalgaard (2004).
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improved. Thus, the effect of organic acids was only taken into

account through the initial pH, whereas the production of lactic

acid by the background flora could have been specifically

considered. The measurement of WPS is probably not

sufficient to study the water activity, as sucrose, measured by

Espe et al. (2004) in French products, or other solutes may also

lower it. The within-batch variability, e.g. the variability of the

WPS due to this more or less equal repartition of the salt

(which could depend on the salting method), was not

considered in this study but could have a great impact, as

suggested by some unexpected results. Last, Brocklehurst

(2003) reviews numerous studies which demonstrate that the

microstructure of the food impacts the microbial growth.

In a broader context, additional preservatives, which are

forbidden in France and were not used in the batches selected

for these experiments, may be taken into account. For example,

when they have been used, nitrites had a significant effect

(Pelroy et al., 1994).

Then, additional sources of between-product and within-

product variability have still to be investigated, before a full

validation of secondary models based on physicochemical

characteristics. Investigation of secondary models based on an

alternative description of the variability could also be valuable.

3.5. Phenolic effect

The highly fail-dangerous characteristic of models 1 and 2

can be easily explained, as Augustin and Carlier (2000a,b)

based their estimations of the phenolic MIC-value on

experimental results in which a phenolic concentration of

1.25 mg/100 ml in broth was inhibitory for L. monocytogenes

(Membré et al., 1997), whereas a concentration of 2 mg/100 g

is not, at least at 8 -C, in our results. This apparent

contradiction may be explained by a difference between the

behaviour of phenolic compounds in broth versus fish. The

solubility of these compounds in the water phase of a fatty fish

is rather unknown, but it can be expected to be low and

dependent on the nature of smoke and the temperature. Second,

the phenolic concentration is probably not sufficient to assess

the antimicrobial activity of smoke. Suñen et al. (2001)

observed growth of L. monocytogenes at 5 -C in broth at a

phenolic concentration as high as 10.75 mg/100 ml, but no

growth at a phenolic concentration of 2.3 mg/100 ml, with

another smoke extract.

Last, the between-strain variability in sensitivity to phenolic

compounds should also be considered. According to results of

Thurette et al. (1998), a concentration of 1.1 mg/100 g in cold-

smoked fish at 4 -C was inhibitory for their reference strain but

not for a cocktail of three strains, including one isolated from

smoked fish.

Thus, results appear relatively controversial. The nature of

the smoke, either wood smoke or liquid smoke, and the

analytical procedure to measure phenolic concentrations differ

from one study to another and this may add confusion. Even if

the MIC-value chosen by Giménez and Dalgaard (2004)

appears satisfactory on the basis of the results presented in

this paper, numerous questions raised regarding the solubility

of phenolic compounds, the between-strain variability, and the

impact of non-phenolic smoke have still to be discussed.

4. Conclusion

Physiochemical characteristics of cold-smoked salmon,

especially the contents in salt and phenolic compounds, affect

growth rates of L. monocytogenes. Secondary models can be

used to model these effects and, among the four tested models,

Table 4

Validation criteria of models 1 to 4 based on 41 growth rates of L. monocytogenes: 10 challenge tests on cold-smoked salmon in the present study (see Fig. 1 and

Table 2, the least squares criterion and the model without any lag phase was selected for all curves), 9 challenge tests on/in cold-smoked salmon taken from literature

(Rosso et al., 1996; Giménez and Dalgaard, 2004; Lakshmanan and Dalgaard, 2004), and 22 challenge tests in cold-process non-smoked salmon (Peterson et al.,

1993; Pelroy et al., 1994; Niedziela et al., 1998)

Model 1a Model 2a Model 3 Model 4 Model 1V Model 2V Model 3V Model 4V Model 5 Model 6 Model 7

10 growth rates of the present study

Af 7.5 >10 1.9 1.7 4.2 >10 2.0 2.0 3.1 2.3 1.8

Bf 0.1 <0.1 0.7 1.1 0.4 0.1 1.3 1.9 3.1 2.2 1.3

9 growth rates in cold-smoked salmon (literature)

Af >10 >10 1.7 1.6 2.9 8.4 2.2 2.8 3.9 2.7 1.8

Bf <0.1 0.1 1.1 1.6 2.9 0.1 2.1 2.8 3.9 2.7 1.8

10+9=19 growth rates in cold-salmon products (all sources)

Af >10 >10 1.8 1.6 3.5 >10 2.1 2.4 3.4 2.5 1.8

Bf 0.1 <0.1 0.9 1.3 1.0 0.1 1.6 2.3 3.4 2.5 1.5

22 growth rates in salted (non-smoked) salmon (literature)

Af 1.7 5.2 1.6 1.5 1.7 5.2 1.6 1.5 2.3 1.5 1.5

Bf 1.6 0.2 1.0 1.5 1.6 0.2 1.0 1.5 2.3 1.5 0.8

Model 1: Augustin and Carlier (2000a). Model 2: Augustin and Carlier (2000b). Model 3: Ross (FAO/WHO, 2004), modified by Giménez and Dalgaard (2004).

Model 4: Devlieghere et al. (2001), modified by Giménez and Dalgaard (2004). Model 1V: Augustin and Carlier (2000a), without phenolic effect (Pmax=V). Model

2V: Augustin and Carlier (2000b), without phenolic effect (Pmax=V). Model 3V: Ross (FAO/WHO, 2004). Model 4V: Devlieghere et al. (2001). Model 5: Pathogen

Modeling program (USDA, 2001). Model 6: Growth Predictor (IFR, 2004). Model 7: FDA (2003).
a For models 1 and 2, the criteria are not defined, as some predicted growth rates are equal to 0. To obtain numerical values, null predictions were replaced by

0.01 day�1.
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the secondary model proposed by Devlieghere et al. (2001) and

modified by Giménez and Dalgaard (2004) appeared the most

appropriate one. However, it was obvious that the studied

factors, including the phenolic content, were not sufficient to

describe the whole variability of the behaviour of L. mono-

cytogenes in cold-smoked salmon. Additional sources of

uncertainty and variability affecting the growth rate should

be considered, such as the between-strain variability and a

between-product variability which is not explained by the

measured physicochemical factors.
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Abstract

The aim of this work is to study and model the effect of a temperature shift on h0, the product of the growth rate by the

lag phase duration (lk). Our work is based on the data of Whiting and Bagi [Int. J. Food Microbiol. 73 (2002) 291], who

studied the influence of both the pre-incubation temperature (Tprior) and the growth temperature (Tgrowth) on k values of

Listeria monocytogenes. We introduce a new model to describe the evolution of the parameter h0 as a function of Tprior and

Tgrowth, and compare it to Whiting and Bagi’s published polynomial model that describes the influence of Tprior and Tgrowth

on k independently of l. For exponential as well as stationary phase cells, h0 increases almost linearly with the magnitude of

the temperature shift. A simple linear model of h0 turns out to be more suitable to predict k values than a polynomial model

of k.
D 2004 Elsevier B.V. All rights reserved.

Keywords: Lag phase duration; Work to be done; Temperature shift; Listeria monocytogenes

1. Introduction

A lag phase corresponds to a transition period

during which microbial cells adjust to their new

environment before exponentially growing. Such an

adjustment period is generally observed at the begin-

ning of experimental microbial growth kinetics, when

the culture medium is inoculated by a preculture. In

food microbiology, a lag phase might occur just after a

contamination from the environment to the product, or

when a contaminated food product undergoes impor-

tant environmental fluctuations. A better understand-

ing of the factors affecting the lag phase duration

might provide ways of delaying or preventing growth

of undesirable microbial populations.
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Unfortunately, the lag phase duration is much more

difficult to predict than the specific growth rate, as it

does not only depend on current conditions, but also

on previous environmental conditions of the bacterial

cells and on their physiological state. Many authors

have reported a strong influence of the pre-incubation

temperature on the lag phase duration (Walker et al.,

1990; Buchanan and Klawitter, 1991; Hudson, 1993;

Bréand et al., 1997, Dufrenne et al., 1997; Membré et

al., 1999; Augustin et al., 2000; Whiting and Bagi,

2002). As an example, bacterial cells previously

cultured at low temperatures have a reduced lag at

low temperatures compared with cells previously

cultured at high temperatures (Walker et al., 1990;

Membré et al., 1999; Whiting and Bagi, 2002).

Some authors model the lag phase duration (k)
independently of the specific growth rate (l) (or

generation time) (for a review see Delignette-Muller,

1998). They generally propose polynomial k models

developed from growth kinetics of cells previously

cultured at a favourable high temperature. Conse-

quently, when these models are used to predict the

growth of an environment contaminant in a refriger-

ated food product, k is overestimated. Membré et al.

(1999) then suggest that in such studies, micro-

organisms should be previously cultured at low

temperatures, in order to mimic the processes of

contamination in industry.

Other authors assume that the product h0=lk does

not depend on the growth conditions, but only of the

pre-incubation conditions (Baranyi and Roberts,

1994; McKellar, 1997; Augustin and Carlier, 2000).

Under this assumption, k may be simply predicted

from the predicted value of l and from the constant

h0 for given pre-incubation conditions (Rosso, 1995).

This product h0 was described as the bwork to be

doneQ by the cells during the lag phase to prepare for

the exponential growth (Robinson et al., 1998; Pin et

al., 2002). If no effect of the growth temperature on

h0 is generally reported in the published studies, an

effect of the medium pH on h0 was observed in

several studies (Delignette-Muller, 1998) as well as

an effect of CO2 and O2 concentrations (Pin et al.,

2002).

Our work is based on data from Whiting and Bagi

(2002), who studied the influence of the pre-incuba-

tion temperature (Tprior) and the growth temperature

(Tgrowth) on k values of Listeria monocytogenes. We

propose a new model to describe the evolution of the

parameter h0 as a function of Tprior and Tgrowth, and

compare it to Whiting and Bagi’s (2002) published

polynomial model that describes the influence of Tprior

and Tgrowth on k independently of l. Our work was

previously presented during the fourth International

Conference bPredictive Modelling in FoodsQ (Delig-
nette-Muller et al., 2003).

2. Materials and methods

2.1. Experimental data

In this study, we used the experimental data

reported by Whiting and Bagi (2002) which con-

cerned the growth of L. monocytogenes Scott A. Cells

were precultured in a brain heart infusion (BHI) broth

at different temperatures (4, 8, 15, 28 and 37 8C) to
the exponential growth or the stationary phases. These

cells were then immediately transferred to BHI broth

at various temperatures (4, 8, 15, 28 and 37 8C), to
reach an initial level of approximately 103 cfu/ml. The

growth curves were obtained by viable count enu-

meration and fitted by the three-phase linear model

(Buchanan et al., 1997) in order to estimate k and l.
Growth rate values were reported only for exponential

phase cells and no effect, neither of the initial

physiological state nor of the Tprior temperature, was

reported on l. In our study, the values of h0 were then

calculated from the reported values of k and from the

values of l estimated by the square root model

proposed by Whiting and Bagi (2002).

2.2. Fitting procedures and statistical methods

All statistical calculations were computed using the

R Software version 1.6.1 (Ihaka and Gentleman,

1996). Fits of models were performed by nonlinear

regression by using the least-squares criterion (Bates

and Watts, 1988). Nonlinear regression was computed

with the nls package available with R. The perform-

ance of the models was evaluated by using a

comparison of root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

yi � ŷyið Þ2
s
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where n is the number of data points, yi is the ith

observed value and ŷi is the ith predicted value.

Comparisons of nested models were performed

using an F test (Bates and Watts, 1988).

Fobs ¼
n� pfð Þ RSSp � RSSf

� �

pf � pp
� �

RSSf

where n is the number of data points, pf is the number of

parameters of the full model, pp is the number of

parameters of the partial model, RSSf is the residual

sum of squares of the full model fit, and RSSp is the

residual sum of squares of the partial model fit. The

observed F value must be compared with a theoretical F

value with v1=pf�pp and v2=n�pf degrees of freedom.

Fig. 1. The values of h0 for exponential and stationary initial physiological states, as a function of the Tgrowth temperature for two extreme Tprior

temperatures.

3. Results

3.1. Modelling of h0

The values of h0 for various values of Tprior and Tgrowth and for both initial physiological states are reported

in Figs. 1 and 2. The h0 mean value appears to be clearly less for exponential phase cells compared with

stationary phase cells. For each value of Tprior, values of Tgrowth have an effect on h0, especially for extreme

values of Tprior. As we can see in Fig. 1, for low Tprior temperatures, h0 increases with Tgrowth and for high Tprior

temperatures, h0 decreases with Tgrowth. A first result is then that the assumption that h0 is a constant for a given

pre-incubation temperature is not supported by these data.

M.L. Delignette-Muller et al. / International Journal of Food Microbiology 100 (2005) 77–84 79
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In Fig. 2, all the values of h0 are plotted against the temperature difference (Tgrowth�Tprior). Globally, h0 seems

to increase with the magnitude of the temperature shift. This increase seems identical for cells in exponential or

stationary state, but the minimum value of h0, corresponding to no temperature shift, is roughly null for

exponential phase and just above one for stationary phase cells. We propose a simple model (Model 1) to describe

the global trend observed in Fig. 2. This model describes four linear segments and is characterized by three

parameters:

h0 ¼
b1 Tgrowth � Tprior
� �

for TgrowthNTprior and exponential state

aþ b1 Tgrowth � Tprior
� �

for TgrowthNTprior and stationary state

� b2 Tgrowth � Tprior
� �

for TgrowthbTprior and exponential state

a� b2 Tgrowth � Tprior
� �

for TgrowthbTprior and stationary state

8>><
>>:

ð1Þ

where a is the theoretical minimal value of h0 for stationary phase cells, b1 (8C�1) is the slope of the linear

increase of h0 for a positive temperature shift and b2 (8C�1) is the slope of the linear decrease of h0 for a

negative temperature shift. This model was globally fitted to the data by nonlinear regression. An equivalent fit

could be obtained by linear regression after introducing some dummy variables, since the model is actually

linear in the parameters (Draper and Smith, 1998). The fitted model is represented in Fig. 2. The fitted values of

a, b1 and b2 and their 95% marginal confidence intervals are 1.06 ([0.97–1.16]), 0.022 ([0.018–0.026]) and

0.031 ([0.027–0.036]).

Fig. 2. The values of h0 for exponential and stationary initial physiological states as a function of the temperature shift (Tgrowth�Tprior) for all the

Tprior temperatures tested, with Model 1 fitted on these values (—).
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3.2. Models comparisons

Model 1 was compared with two other models for the prediction of the k values of the data set. Model 2 is

defined as the association of the two polynomial models proposed by Whiting and Bagi (2002) for exponential and

stationary initial physiological states, each with six parameters.

k¼ 10
�0:8988þ0:04237Tpriorþ0:02903Tgrowthþ0:000657T2

prior
þ0:000128T2

growth
�0:00289TpriorTgrowth for exponential state

10
1:619648�0:000337Tprior�0:081914Tgrowthþ0:000350T2

prior
þ0:001251T2

growth
�0:000591TpriorTgrowth for stationary state

(
ð2Þ

In Model 3, h0 is classically assumed independent of Tgrowth. As no obvious effect of Tprior on the h0 mean

value was previously observed, h0 is assumed constant for each physiological state and fixed to the mean observed

values for each state. So Model 3 includes two parameters.

h0 ¼ 0:37 for exponential state

1:42 for stationary state

�
ð3Þ

For Models 1 and 3, the values of k were calculated from the predicted values of h0 and the values of l predicted

by the square root model given by Whiting and Bagi (2002):

l ¼ ln 10ð Þ � 0:07427þ 0:0174Tgrowth
� �2 ð4Þ

The theoretical values of h0 predicted by Model 3 and by the association of Model 2 and Eq. (4) are respectively

reported in Figs. 3 and 4, against the observed values of h0 for exponential and stationary phase cells. We can see

Fig. 3. The theoretical values of h0 calculated as the product of the values of k predicted by Model 2 by the values of l predicted by the square

root model (Whiting and Bagi, 2002) superimposed with all the values of h0 observed for exponential and stationary initial physiological states

as a function of the temperature shift (Tgrowth�Tprior).
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comparing Figs. 2 and 4 that Model 1 gives a much better description of the evolution of h0 than Model 3, with one

more parameter only. Now comparing Figs. 2 and 3, Model 1 seems to give a more robust description of the

evolution of h0 than Model 2. Especially, the maximal theoretical values of h0 described by Model 2 for several

Tprior temperatures near the minimal difference Tgrowth�Tprior does not seem biologically sounded.

In order to compare the three models for the prediction of the lag phase durations, the Root Mean Square Error

(RMSE) on the predicted values of k were computed. RMSE values obtained with Models 1, 2 and 3 are

respectively 1.66, 3.23 and 5.14. In terms of RMSE, Model 1 with three parameters gives better predictions than

Model 2 with 12 parameters, and much better predictions than Model 3 with two parameters. So even if Model 1

was not directly fitted on k values, it gives good predictions of k values in comparison with Model 2.

Fig. 4. The theoretical values of h0 predicted by Model 3 (—) superimposed with all the values of h0 observed for exponential and stationary

initial physiological states as a function of the temperature shift (Tgrowth�Tprior).

4. Discussion

The study of the dataset of Whiting and Bagi

(2002) shows interesting results concerning the

evolution of h0 with the magnitude of the temperature

shift. For both exponential and stationary initial

physiological states, h0 increases almost linearly with

the magnitude of the temperature shift. A roughly

similar trend is observed for both physiological states,

but with different minimal h0 values. When there is no

temperature shift, the values of h0 are around 1 for

stationary phase cells and roughly nil for exponential

phase cells. A simple linear model describing this

approximated evolution of h0 with only three param-

eters turns out to give better predictions of the values

of k than the polynomial model developed by Whiting
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and Bagi (2002) with 12 parameters. Modelling h0
instead of l and k separately appears here simpler and

more efficient.

In Whiting and Bagi’s work (2002), three other

initial physiological states of the cells were studied.

After the first growth cultures at various Tprior

temperatures, additional cells were suspended in a

dilute broth, dessicated or frozen. Second cultures of

these cells were then done at various Tgrowth temper-

atures. For starved and frozen cells, an increase of h0
with the magnitude of the temperature shift was also

observed, but mainly for a positive temperature shift,

and with far more variability around the trend than

with exponential and stationary phase cells. Regard-

ing this variability, it does not seem reasonable to fit

any model on the observed values of h0. For dried

cells, an increase of h0 with the magnitude of the

temperature shift was observed only for a negative

temperature shift, and with a few points only. So it

does not seem possible to generalize the results

observed on exponential and stationary phase cells

to cells grown to the other physiological states studied

by Whiting and Bagi (2002).

Coming to the observed evolution of h0 for

exponential and stationary phase cells, if h0 is

regarded as the bwork to be doneQ by the cells during

the lag phase to prepare for the exponential growth, it

may then be interpreted as the sum of the work to

adapt to a new environment and the work to emerge

from the stationary state. In the studied data, the only

change between pre-growth and growth conditions

concerns temperature. If another growth factor is

changed, such as the growth medium, another term

corresponding to the work to adapt to this new

medium may be added to h0. Moreover, the definition

of the stationary physiological state is not unique.

Augustin et al. (2000) reported a continuous increase

of h0 as a function of the time spent in the stationary

phase for a given couple (Tprior, Tgrowth). The gap

between h0 values for exponential and stationary

initial physiological states may then be variable.

Moreover, in Whiting and Bagi’s study (2002), the

temperature transition between Tprior and Tgrowth was

instantaneous. A slower temperature transition might

have a lower impact on h0 (Whiting and Bagi, 2002).

With all these comments in mind, we should be very

cautious before using any model to predict k values

from Tprior and Tgrowth temperatures only. Such a

model might take into account various other exper-

imental conditions.

The existence of a temperature shift cut-off above

which h0 is affected was reported in the literature

(Buchanan and Klawitter, 1991; Augustin et al.,

2000). The existence of such a cut-off is not obvious

in this study, but neither could it be excluded. The

existence of a temperature shift cut-off appears more

likely on data related to the exponential state (Fig. 2).

Ng et al. (1962) and Shaw (1967) observed that

temperature shifts within the normal physiological

temperature range (NPTR, approximately 20–37 8C
for Escherichia coli) have little effect on the lag phase

duration. It seems difficult to check in this study as

most of the data points correspond to shifts from or to

a temperature outside this NPTR. Shaw (1967) also

studied on mesophilic and psychrophilic yeasts the

effect of negative temperature shifts from different

moderate Tprior temperatures to one low Tgrowth

temperature below the NPTR. He observed a linear

relationship between the magnitude of the shift and

the lag phase duration. This is concordant with our

results, since h0 may be assumed proportional to k for

a constant Tgrowth temperature.

Our results are globally concordant with the

observations made by Hudson (1993) on Aeromonas

hydrophila JAH4 cells initially in exponential state. In

their experiment, four Tprior temperatures (from 5 to

35 8C) were crossed with four Tgrowth temperatures

(from 5 to 35 8C). By calculating the values of h0
from their reported results, we can see a global

increase of h0 with the magnitude of the temperature

shift. On the other hand, our results are discordant

with the observations made by Mellefont and Ross

(2003) on E. coli SB1 cells initially in late exponential

state. In their experiment, two extreme Tprior temper-

atures (10 and 44 8C) were crossed with 23 Tgrowth

temperatures. An increase of h0 was observed only for

a negative temperature shift in their study, but no

increase was observed for a positive shift from 10 8C.
More generally, a linear increase of h0 with the

magnitude of the temperature shift is not usually

observed and h0 is sometimes considered independent

of it. This might be due to a stronger impact of

additional variables such as pH and salt concentration

in some studies (Delignette-Muller, 1998) and by a

smaller range of temperature shifts (Pin et al., 2002).

Moreover, when pre-incubation occurs at sub-optimal
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conditions, as it is the case for most of the

publications (Delignette-Muller, 1998), h0 appears to

be approximately constant for different post-incuba-

tion temperatures, but for inimical pre-incubation

conditions, h0 is no longer independent of temper-

ature. A potential effect of the temperature shift on the

lag phase duration should then be taken into account.

It would be very interesting to perform experiments

similar to that of Whiting and Bagi (2002) on other

microbial species, in order to see if the global linear

increase of h0 with the magnitude of the temperature

shift can be confirmed. From such data, the modelling

of the parameter h0 should be performed, as it may

lead to simpler, better and more understandable

models than the independent modelling of the lag

phase duration.
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Abstract

In this research, we question the straight-forward use of the classical sum of squared error criterion for identifying the typical

parameters of a primary model (like growth rate lmax and lag time k) when applied to growth curves obtained in and on food

products. Firstly, we base our reflections on 62 Listeria monocytogenes laboratory challenge tests collected in various

environments (broth, crushed cold-smoked salmon, and surface of cold-smoked salmon slices). Whereas growth data in

broth resulted in residual values consistent with a Gaussian distribution, growth data in the crushed product and even more on

the surface of slices appeared different. Secondly, we propose the use of an alternative so-called robust non-linear regression

method suitable when experimental error is non-normally distributed, which seems, according to this research, typical for

microbial challenge tests in/on food products, and which lead to apparent outliers or leverage points in the experimental data.

Properties of the robust regression procedure are illustrated on simulated data first, whereafter its use on the considered

challenge tests is illustrated. To conclude, reflections on the assumptions and related realism underlying challenge tests and

recommendations for fitting growth curves obtained in and on food products are presented.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Predictive microbiology; Primary model; Challenge tests; Structured food products; Listeria monocytogenes

1. Introduction

A typical microbial growth curve is obtained by a

batch culture in an homogeneous, liquid environment,

contaminated by an initial number of N0 microbial

cells. Schematically, it has three distinct phases: (i) an

initial lag phase, the duration of which is denoted k,
and during which the N0 microbial cells adapt to their

new environment, (ii) an exponential growth phase,

where cells are multiplying at a certain rate lmax, (iii)

and a stationary phase, where the maximum popula-

tion density Nmax is reached and growth ceases. Two

additive transition phases can also be considered be-
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tween them and a (rapidly or slowly occurring) inac-

tivation phase follows this growth curve. Various

equations, the so-called primary models, have been

proposed to describe such growth curves as a function

of time t and thus to estimate N0, k, lmax and Nmax (or

equivalent parameters).

As stated by McKellar and Lu (2003a), the concept

of the primary model is fundamental to the field of

predictive microbiology, which aims to predict the

behaviour of spoilage or pathogenic microbial flora

in food products (see McMeekin et al., 1993; Ross,

1999; McKellar and Lu, 2003b). Primary models are

combined with secondary models (Whiting and

Buchanan, 1993), describing the influence of the en-

vironment (mostly temperature, possibly pH, water

activity, content in growth inhibitors) on the growth

rate lmax (and possibly on the lag time k and on the

maximum population density Nmax).

Challenge tests, studying growth kinetics of delib-

erately added micro-organisms, are an important

source of information in food microbiology. They

are among the basic tools for determining the ability

of a food to support the growth of spoilage organisms

or pathogens, and to determine the potential shelf-life

of perishable food products. More recently, they have

been used in predictive microbiology (Brocklehurst,

2003; Wilson et al., 2002).

The estimated primary model parameters, especial-

ly the growth rates, can then be used either to create

new secondary models (e.g. Rosso et al., 1996;

Augustin and Carlier, 2000a,b; Oscar, 2002; FDA,

2003; Pinon et al., 2004; Giménez and Dalgaard,

2004) or to validate predictions of independent sec-

ondary models (e.g. Neumeyer et al., 1997; te Giffel

and Zwietering, 1999; Devlieghere et al., 2000; Cas-

tillejo-Rodriguez et al., 2002; Pinon et al., 2004;

Giménez and Dalgaard, 2004).

The classical way of identifying the parameters of a

primary model (or any other regression model) is by

minimizing the sum of squared errors between the

data points and the model prediction. The parameter

set corresponding to this classical least-squares error

criterion is equivalent to a so-called maximum likeli-

hood estimator (i.e., the parameter set maximising the

likelihood of the experimental data being generated by

the parameterised model) if the residual errors can be

assumed to be normally distributed. In the case of

growth curves in a liquid microbiological medium (or

broth), this non-linear regression has been quite ex-

tensively studied from a statistical point of view (e.g.

Baty et al., 2002; Poschet et al., 2003; Baty and

Delignette-Muller, 2004). However, in the specific

case of challenge-tests performed on or in (possibly)

non-homogenous and solid food products, the statis-

tical hypotheses underlying this regression and the

associated uncertainty have, as far as we know,

never been investigated.

The objective of this research is to investigate the

use of a classical primary model to describe different

types of growth curves, with a special interest in the

statistical properties of non-linear regression. Section

2 deals with the classical least-squares regression,

which is tested on 62 laboratory growth curves. In

Section 3, the robust regression method, which

appears more adapted to specific cases of challenge

tests, is proposed, validated on simulated realistic

growth curves, and finally tested on some experimen-

tal growth curves. In the last section, discussion and

conclusions regarding challenge tests and appropriate

modelling procedures are formulated.

2. Classical least-squares regression

2.1. Materials and methods

2.1.1. Microbial data

Three different types of growth experiments of

Listeria monocytogenes are used in this research: 9

curves in broth, 29 curves in crushed cold-smoked

salmon, and 24 curves on the surface of cold-smoked

salmon slices, i.e., a total of 62 curves.

For each experiment in broth, a L. monocytogenes

strain was subcultured twice at 10 8C or 37 8C in TSB

or TSB–Ye. An Erlenmeyer flask, containing 1 L of

TSB or TSB–Ye, was inoculated by 1 mL containing

the desired cellular concentration, and incubated in a

thermostated water bath, at 4, 8, 12, or 37 8C, the
medium being aerated and mixed, using a magnetic

stirrer. At each of the n sampling times, an aliquot was

retrieved from the culture using spinal needles in the

cap of the flask. The number of viable cells in this

aliquot was determined by plate-counting on TSA and

population densities were expressed as log [cfu/mL].

For each experiment in crushed cold-smoked salm-

on, a L. monocytogenes strain was subcultured twice
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at 10 8C in TSB. Cold-smoked salmon slices of a

same production batch were crushed together, mixed,

and then n small 10-g packs were separated. A 0.1-ml

volume containing the desired cellular concentration

was added to each pack, which was mixed thoroughly,

vacuum-packaged in oxygen-impermeable film, and

incubated at 4 8C or 8 8C. For some curves, there were

n/3 sampling times and at each of them, three 10-g

packs were analysed, whereas, for other growth

curves, there were n sampling times and at each of

them, one 10-g pack was analysed. Packs were pum-

melled with buffer in a stomacher homogeniser. The

population density of L. monocytogenes was deter-

mined by plate-counting on Palcam, and expressed as

log [cfu/g].

For each experiment on the surface of cold-smoked

salmon slices, a L. monocytogenes strain was subcul-

tured twice at 10 8C in TSB. An 89-mm disk was cut

from each of n cold-smoked salmon slices of a same

production batch. A 0.1-ml volume containing the

desired cellular concentration was spread onto each

disk, which was then folded, so that the inoculum was

sandwiched between the two layers. The n vacuum-

packaged disks were incubated at 4 8C or 8 8C. At
each of the n sampling times, one disk was pum-

melled with buffer in a stomacher homogeniser. The

population density of L. monocytogenes was deter-

mined by plate-counting on Palcam, and expressed as

log [cfu/cm2].

The common features of these three types of

experiments are that (i) they were all performed in

the same laboratory, between 1998 and 2003, using

similar plate-counting procedures, (ii) they all con-

sisted in the inoculation of one (or n) unit(s) with a

strain of L. monocytogenes and then the incubation of

this unit (or these n units) in isothermal conditions,

(iii) the number of data points per growth curve, n,

was relatively high (usually around 20).

The main differences between the three types are

(i) the nature of the inoculated environment (liquid

broth, or solid food, i.e., cold-smoked salmon,

crushed or not), (ii) the number of different inoculated

units per curve, as there was only one common flask

in a broth experiment, whereas there were n different

packs or n different disks in a challenge test, (iii) the

homogenisation of the growth environment(s) before

and/or along the experiment, as there was a constant

homogenisation during a whole broth experiment,

whereas the homogenisation was only partial in a

challenge test in crushed food (as the food was

mixed before separation into n samples, and each

sample was separately mixed after inoculation), and

there was none in a challenge test on the surfaces.

2.1.2. Primary models

As mentioned above, several primary models

have been proposed in the literature, and a very

recent overview of existing primary models can be

found in McKellar and Lu (2003a). However, we

focused on one single primary model, introduced by

Baranyi and Roberts (1994), which is widely used

(e.g. George et al., 1997; McClure et al., 1997; van

Gerwen and Zwietering, 1998; Rodriguez et al.,

2000; Coleman et al., 2003; Cornu et al., 2003;

Panagou et al., 2003).

In its original, dynamic formulation, the model of

Baranyi and Roberts (1994) reads as follows.

dN

dt
¼ Q

1þ Q
lmax 1� N

Nmax

�
N

�
ð1Þ

with N(t =0)=N0

dQ

dt
¼ lmaxQ ð2Þ

with Q(t =0)=Q0.

The first differential equation describes the evolu-

tion of the microbial load N, for example in [cfu/mL].

The first factor on the right hand side of this equation

is related to the adjustment of the microbial cells

during the lag phase by means of a variable represent-

ing the physiological state of the cells Q [adimen-

sional]. This variable Q is assumed to be proportional

to the concentration of a (hypothetical) critical sub-

stance which is the bottle-neck in the growth process.

The second factor expresses the exponential phase,

with lmax the growth rate [day�1]. The third factor

describes the transition to the stationary phase where

the maximum microbial load Nmax is attained. The

second differential equation describes the evolution of

Q, which increases exponentially.

For static conditions, and for a given set of initial

conditions N(0) and Q(0), the following explicit al-

gebraic version can be derived.

y ¼ y1 þ y2 þ y3

ln10
ð3Þ

N. Miconnet et al. / International Journal of Food Microbiology 104 (2005) 161–177 163



- 86 -

with

y1 ¼ lmaxt þ y0ln10 ð4Þ

y2 ¼ ln e�lmax kþtð Þ � 1þ elmaxk þ etlmax
� �h i

ð5Þ

y3 ¼ ln
h
e�klmax�ymaxln10

�� ey0ln10 þ elmaxtþy0ln10

þ eklmaxþymaxln10
�i ð6Þ

In these equations, y0 indicates the initial base 10 log

count [log cfu/ml], with y0= (ln N(0)) / (ln 10)= log

N(0), ymax the maximal base 10 log count [log cfu/

ml], with ymax= log Nmax, lmax, the growth rate

[day�1], and k the lag phase [days], with k =(ln
(1+[1] / [ln Q(0)])) / (lmax).

2.1.3. Estimation procedure

Fitting a growth curve leads to the estimation of the

four parameters of the primary model. The parameter

of main interest for us here was the growth rate, lmax.

The regression problem can be summarized by the

following notations yi = f(x,ti)+ ri for i =1,. . .,n, with
yi the ith observation for the dependent variable [log

cfu/ml], f the regression model (i.e., the Baranyi and

Roberts primary model), x the set of the four para-

meters (lmax, y0, k, ymax), t the independent variable

(the time), ri the ith residual, and n the number of

observations. Non-linear regression is the result of this

minimization problem:

min
x

Xn
i¼1

q ri xð Þð Þ ð7Þ

where q(u)=u2 for the least-squares regression.

The validity of this error criterion is based on four

assumptions: (i) the regression equation (in this case,

the Baranyi and Roberts growth model) used is cor-

rect, (ii) the independent variables (in this case, time

expressed in days) are perfectly measured, (iii) the

dependent variables (in this case, y =log N) have an

experimental error which is constant over the range

studied, (iv) the dependent variables (in this case,

y =log N) are independent and identically distributed.

The least-squares estimator is then efficient (i.e., the

obtained parameter variance is the smallest possible)

in the case of Gaussian errors, and is in these circum-

stances equivalent to a maximum likelihood estimator.

The primary Baranyi and Roberts model was

adjusted to each growth curve separately, by mini-

mizing the sum of squared errors, using the lsqnon-

lin function of the Matlab-Optimization Toolbox

(The Mathworks Inc., Natick, United States). The

parameter k was constrained to be positive. To cir-

cumvent the possible problem of local minima, 120

different sets of initial estimates of the four para-

meters were used. On the basis of previous trials

(data not shown), the 120 sets of initial parameters

were the 120 combinations of one fixed value for y0
(e.g. the initial log-transformed observation), one

fixed value for ymax (e.g. the last log-transformed

observation), one value between 0.2 and 2 with a

step of 0.2 for lmax, and one value between 0.5 and

6 with a step of 0.5 for k. The trials demonstrated

that this precaution was highly sufficient, and even

in most cases unnecessary. At most, four local min-

ima were identified and the global minimum was

retained in the further analysis.

2.1.4. Evaluation of fit and distribution of residuals

For each of the 62 growth curves (9 curves in

broth, 29 curves in crushed cold-smoked salmon,

and 24 curves on the surface of slices), the quality

of the fit was evaluated visually and through various

criteria describing the residuals: (i) the estimated root

mean square error (RMSE), (ii) the highest residual

(in absolute value), (iii) the skewness-values, and (iv)

the Kurtosis-values of the distribution of n residuals.

Six parametric distributions (Gaussian, 2-parame-

ter logistic, Laplace, shifted Weibull, shifted Gamma,

and shifted Lognormal) were fitted to each distribu-

tion of n residuals. Five of these functions are defined

in Vose (2000), whereas the Laplace distribution is

defined through its probability density function:

f(x)=0.5e�k |x | where k ¼
ffiffi
2

p
r .

Kolmogorov–Smirnoff and Anderson–Darling

goodness-of-fit tests (Vose, 2000) were performed.

Additionally, simulations were performed to enable

another global goodness-of-fit evaluation. We simu-

lated 10000 sets of 20 values sampled from a Gauss-

ian distribution, the Kurtosis-values of these simulated

data were calculated and compared with the Kurtosis-

values of the empirical distributions, each of n resi-

duals. The same simulations and comparisons were

repeated with 10000 sets of 20 values sampled from a

two-parameter logistic parametric distribution and
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with 10000 sets of 20 values sampled from a Laplace

parametric distribution.

All calculations were performed using Matlab.

2.2. Results

2.2.1. Pattern of growth curves

Fig. 1 presents four examples of growth curves.

The growth curve in broth (Fig. 1a) exhibits the

classical traits of a typical growth curve in broth,

with the lag phase, exponential phase and stationary

phase. The first growth curve in crushed food (Fig.

1b) is similar, even if the exponential growth phase

appears slightly noisy. In the second growth curve in

crushed food (Fig. 1c), the exponential growth phase

is even more noisy, with slow-downs after the 10th

and the 15th day, and a (visual) outlier point at the

19th day. Moreover, the experiment was (non-pur-

posely) interrupted too early, and the stationary

phase is poorly described. Last, outliers are also ob-

served in the growth curve obtained on the surface of

cold-smoked salmon slices (Fig. 1d). These four

examples are representative for the overall set of data.

2.2.2. Quality of fit

Table 1 presents the quartiles of estimated root

mean squares errors for each growth environment.

Important differences related to the growth environ-
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Fig. 1. Typical examples of four growth curves: (a) in broth, (b) and (c) in crushed cold-smoked salmon, (d) on the surface of cold-smoked

salmon.
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ment are observed, the root mean squares errors being

definitely smaller for the curves carried out in broth

than those obtained on the surface of cold-smoked

salmon, the curves carried out in crushed cold-smoked

salmon corresponding to an intermediate situation. It

can be assumed that values obtained in broth represent

mostly the analytical error, due to the viable count

procedure. Values obtained for the growth curves in

crushed food and even more on food surface are far

higher. As the same viable count procedure was ap-

plied to all growth curves, we can hypothesise that

this difference is explained by additional errors. A

first group of errors are measurement/methodological

errors or variability: heterogeneity of the initial con-

tamination, and/or heterogeneity of the growth envi-

ronment between the different packages constituting a

growth curve. A second error type is related to the

suitability of the Baranyi and Roberts growth model

(or any other classical primary model) when real

deviations from the exponential growth phase are

apparent (for example, slow-downs in the growth, as

observed by Cornu et al. (1999) for Escherichia coli

O157:H7 growing on a minimal liquid medium and

Vereecken (2002) for Lactococcus lactis on a rich

modified BHI medium). Observe that in our case, it

was impossible to discriminate from the collected data

between a real deviation from the exponential growth,

e.g. due to diauxic growth and a deviation due to

heterogeneity of the medium. As there is a mixing

step at the beginning of a growth curve in crushed

salmon and not on the surface of sliced salmon, it is

expected that heterogeneity errors are higher in the

latter case. The same conclusions can be drawn for the

maximal residual of each curve (data not shown).

Some of these higher residuals might result from

outlier data points (as shown in Fig. 1).

2.2.3. Outliers and normality of residuals

We subsequently focused on the distributions of

residuals, which are generally assumed to be Gaussian

in non-linear regression. Skewness-values were close

to zero (data not shown). Table 2a presents the quar-

tiles of their Kurtosis-values for each of the three

growth environments. The Kurtosis-values are far

higher than 3 (the reference value for a Gaussian

distribution) for some growth curves in crushed salm-

on and most growth curves on the surface of salmon

slices. Such Kurtosis-values may be explained by the

non-normality of residuals, and/or by the presence of

outliers. Various parametric distributions were fitted to

each distribution, and none of these fits could be

excluded, as most growth curves have too few data

Table 2

Quartiles of (a) the Kurtosis coefficients of the distributions of residuals of a set of 9 curves in broth, a set of 29 curves in crushed cold-smoked

salmon, a set of 24 curves on surface of cold-smoked salmon, and (b) the Kurtosis coefficients of 10000 simulated Gaussian distributions of 20

points, 10000 simulated logistic distributions of 20 points, and 10000 simulated Laplace distributions of 20 points

(a) Growth environment Minimum 25% Median 75% Maximum

Broth 1.66 2.16 2.3 2.97 4.05

Crushed cold-smoked salmon 1.70 2.22 2.78 3.82 5.60

Surface of cold-smoked salmon 2.20 2.78 3.65 5.15 10.60

(b) Simulated distributions 2.5% 25% Median 75% 97.5%

Gaussian 1.74 2.20 2.54 3.03 4.66

Logistic 1.82 2.42 2.90 3.66 6.45

Laplace 2.06 2.83 3.53 4.60 8.40

Table 1

Quartiles of the root mean square errors estimated by least-squares regression of the Baranyi and Roberts model to a set of 9 curves in broth, a

set of 29 curves in crushed cold-smoked salmon, a set of 24 curves on surface of cold-smoked salmon

Growth environment Minimum 25th percentile Median 75th percentile Maximum

Broth 0.05 0.05 0.07 0.13 0.17

Crushed cold-smoked salmon 0.13 0.19 0.21 0.27 0.43

Surface of cold-smoked salmon 0.11 0.30 0.37 0.43 0.61
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points (around 20) and goodness-of-fit tests (Kol-

mogorov–Smirnoff and Anderson–Darling tests)

were not powerful enough. However, on the basis

of the null Skewness-values, the symmetrical

Gaussian, logistic and Laplace laws appear to be

good candidates. A global goodness-of-fit evalua-

tion was then based on simulations. The quartiles

of the Kurtosis-values of values sampled from three

parametric distributions (Gaussian, logistic, and

Laplace) are presented in Table 2b. On the basis

of these results, we suppose for the continuation of

this work that the residuals of the curves in broth

are normally distributed, that those of crushed salm-

on result from a logistic distribution whereas those

of the surface curves result from a Laplace distri-

bution. We cannot exclude other hypotheses, it

could be for example hypothesised that residuals

could issue from another law, or even a mixture

of laws, or that residuals of each growth curve

could issue from a Gaussian distribution contami-

nated by outliers. Further research could focus on

the description of these errors, possibly with a

continuous adjustment. Nevertheless, our Gaussian/

logistic/Laplace hypothesis appears consistent with

the observations.

2.2.4. Necessity of a robust alternative to least-

squares regression

The main observation of this experimental part is

the particularity of growth curves obtained in and on

foods, compared to those obtained in broth, with the

presence of outliers (see Fig. 1c and d) and/or the non-

normality of residuals (see Table 2).

In the case of growth curves in broth, the tradi-

tional least-squares criterion is to be preferred since

the least-squares estimator is unbiased and has the

minimal variance when the residuals are distributed

normally. However, in the case of challenge-tests, the

least-squares criterion may not be optimal. Indeed,

only one outlier can cause a considerable bias of the

least-squares estimator, in particular when the num-

ber of observations per curve is low, which is gen-

erally the case in this field. Potential deficiencies of

least-squares methods in such cases have been in-

vestigated since the 1960s, and robust estimation was

proposed (Huber, 1973; Dutter, 1977). The meaning

of brobustQ is that a few erroneous observations

should not alter the result in a significant way. The

purpose is to make a statistical model that is not

sensitive to (relatively) gross errors and/or non-nor-

mality in the data.

3. Robust regression

From the previous section, it appeared that a

robust method may be more adaptive to fit some

growth curves obtained in or on cold-smoked salm-

on to circumvent potential problems related to out-

liers and/or non-normality of residuals. In this

section, robust regression is firstly theoretically pre-

sented, secondly validated on the basis of simulated

growth curves, and finally applied to experimental

growth curves. In this paper, methodological con-

siderations are only shortly introduced, focusing on

the selected case-study of primary modelling for

challenge tests.

3.1. Robust regression methods

3.1.1. Overview of robust regression methods

There are two robust methodologies developed in

order to reduce the impact of outliers (Rousseeuw and

Leroy, 1987).

The first approach to using robust methods sim-

ply replaces the least-squares objective function (see

Eq. (7)), with one less sensitive to outliers, i.e., a

robust objective function. In 1887, Edgeworth pro-

posed to replace q(u)=u2 by q(u)= |u|. This defines

the l1 or Least-Absolute Deviation estimator. Howev-

er, it is difficult to use in non-linear regression due to

differentiability issues (Edlund et al., 1997; Rous-

seeuw and Leroy, 1987). Subsequently, other robust

criteria have been proposed. One class of these

alternative estimators is the family of M-estima-

tors. The term M-estimator is to be interpreted as

a maximum likelihood type estimator, and is jus-

tified by the fact that the definition of an M-

estimator is somewhat similar to the maximum

likelihood problem (Huber, 1981). In this class,

the so-called Huber M-estimator is of particular

interest in applications, and is presented in the

next subsection.

The second approach is to detect outliers in a first

step, on the basis of a robust regression. Once iden-

tified, outliers are corrected, removed, or down-
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weighted, the bgoodQ data are refitted using standard

least-squares methods (Shertzer and Prager, 2002).

The S-estimators (Rousseeuw and Leroy, 1987),

for example the Least-Median of Squares (LMS),

are recommended for this first step. A practical

problem with the use of LMS is the difficulty of

finding the minimum of a LMS objective function,

particularly for non-linear optimization methods,

where LMS poses a particularly difficult challenge

(Stromberg, 1993). Moreover, the correction or re-

moval of suspect data is not always acceptable. In

the specific case of our study, outlier data are

suspect but cannot be asserted to be aberrant. Po-

tential (large) reporting errors are systematically

identified and corrected by food microbiologists

and data obtained by incorrect experimental proce-

dures are excluded. To summarize, it is in practice

impossible to discriminate whether one or more

outlier data represent experimental gross errors

(measurement uncertainty) or if they really express

unexplained (and unmodelled) biological variability.

For these reasons, the LMS method did not appear

as suitable for growth curves with suspect data or

non-normal errors. This S-estimator will not be

investigated further.

3.1.2. The M-estimators

In robust regression, it is necessary to transform

the regression model (see Eq. (7)), to obtain invari-

ance of errors by transformation (Huber, 1981). The

residual entries are rescaled by a factor r (standard

error of the residuals), giving the following optimiza-

tion problem:

min
x

Xn
i¼1

q
ri xð Þ
r

��
ð8Þ

where q(u)z0, q is a decreasing function when u b0
(and an increasing function when u N0). The scaling

factor r can be either known (and fixed) or estimated

in the same optimization procedure. In the case of

growth curves, it appears difficult, or even impossible,

to fix a value for r.
As discussed higher, both measurement and model

uncertainties have to be dealt with in the case of

growth curves obtained in or on smoked salmon,

and the errors are higher then when tested in a liquid

medium. In other words, the standard error r or

RMSE as an estimator of r are data-specific and

cannot be fixed beforehand. The least-squares estima-

tor of r or RMSE might be used but is not robust.

Croux and Rousseeuw (1992) proposed to use the Sn
estimator defined by:

Sn ¼ k2medimedjp ijri � rjj ð9Þ

where med is the median and k2 is a constant (one per

type of residual law). In the case of the Gaussian

distribution, the constant k2 was fixed at the classical

value of 1.1926 (Croux and Rousseeuw, 1992). For

Logistic and Laplace laws, we used the procedure

described by Croux and Rousseeuw (1992) to calcu-

late k2, and we obtained k2i1.28 in the first case and

k2i1.53 in the latter case.

3.1.3. The Huber M-estimator

In Eq. (8), various functions q can be used. The

Huber M-estimator proved to be the M-solution of a

contaminated Gaussian error model (Huber, 1973,

1981). It is a widely used robust estimator, defined

by:

q uð Þ ¼
u2

2
if jujVc

cjuj � c2

2
if jujNc

8><
>: ð10Þ

c is a tuning constant and c =1.345 by default.

When the residuals are normally distributed and

the tuning constant is set at the default value,

they give the procedure about 95% of the efficiency

of classical ordinary least-squares. The Huber esti-

mator coincides with the least-squares estimator as a

limiting case when the tuning parameter approaches

infinity. Furthermore, if we let c tend to zero, the

Huber estimator will approach the l1-estimator. For

intermediate values, the purpose is to treat the

majority of data as in least-squares estimation,

while possible outliers are limited in their weight

in the error function.

3.2. Comparison of least-squares regression and

robust regression on the basis of simulated growth

curves

After this theoretical introduction, we tested the

application of the Huber estimator to identify the
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parameters of the Baranyi and Roberts primary model.

Simulations are performed to compare both the bias

and precision of the Huber and the least-squares esti-

mators concerning their ability to find the known

parameters underlying the simulated growth curves.

A method is all the more unbiased as the mean of the

estimated parameters is close to the fixed known

value. A method is all the more precise as the variance

of the estimated parameters is close to zero.

3.2.1. Simulation procedure

In the simulation study, bperfectQ growth curves

were first simulated, using the Baranyi and Roberts

primary model with fixed values for each of the

four parameters (lmax, y0, k and ymax). Realistic

parameters were chosen: x̄1=lmax=0.8 day�1, x̄2=

y0=1 log (cfu/cm2), x̄3=k =3 days and x̄4=ymax=7

log (cfu/cm2).

Subsequently, brealisticQ growth curves were sim-

ulated, by adding residuals, randomly sampled from

various distributions. Each simulated curve had 20

data points, at 20 equidistant sampling times tk.

The jth simulated curve is then:

ȳjk ¼ f
�
x̄; tk

�þ r̂jk ð11Þ

for k =1,. . .,20 where x̄ =(x̄1, x̄2, x̄3, x̄4), and

r̂jkUD(m =0, r) (D being a Gaussian, Logistic or

Laplace distribution, with expectation m =0, and stan-

dard deviation=r).
Gaussian, Logistic or Laplace distributions are

supposed to represent distributions of residuals re-

spectively in broth, in crushed cold-smoked salmon,

and on the surface of the salmon (as based on the

results presented in Section 2.2.3). Two different

values of r were tested per distribution type: the

minimal and the maximal root mean squares errors

in each growth environment. For the Gaussian law

(which simulated the curves in broth), r =0.05
and 0.17; for the Logistic law (which simulated

the curves in crushed cold-smoked salmon),

r =0.13 and 0.43; for the Laplace (which simu-

lated the curves on cold-smoked salmon), r =0.11
and 0.61.

For each distribution, 5000 20-point curves were

simulated. The four parameters of the Baranyi and

Roberts model were estimated for each simulated

curves, both by least-squares regression, and by

robust regression, using the Huber M-estimator.

The least-squares regression method was similar to

the one defined in Section 2.1.3. The robust regres-

sion method required the procedure fmincon of the

Matlab Optimization Toolbox, making use of a Se-

quential Quadratic Programming method with an

incorporated Quasi-Newton updating procedure.

The Sn estimator was calculated as defined in Sec-

tion 3.1.2.

The means and variances of the 5.000 sets of

parameters for each distribution were compared to

assess the bias and precision of these estimators.

3.2.2. Simulation results

Table 3 presents the estimated bias and precision of

each regression method, in six different cases.

The Gaussian errors were supposed to simulate

growth curves in broth. In this case, and in the ab-

sence of outliers, it is well-known that the least-

squares estimator is optimal and has to be used. For

both tested values of r and for the four parameters,

the least-squares estimator appears indeed less biased

and more precise than the Huber M-estimator (Table

3a and b).

With the Logistic distributions, which were sup-

posed to simulate growth curves in crushed cold-

smoked salmon, the least-squares estimator also

appears less biased (except for one parameter, the

lag time) and more precise (for all parameters) than

the Huber estimator (Table 3c and d), even if the

difference between the two methods is less pro-

nounced than with the Gaussian distributions.

On the contrary, with the Laplace distributions,

which were supposed to simulate growth curves on

surface of salmon, the robust estimator appear less

biased (except for the lag time and the maximal

population in the last simulation), and more precise

(for all parameters in both simulations) than the least-

squares regression (Table 3e and f).

The use of the Huber M-estimator is then to be

recommended in the case of such non-Gaussian

errors, which may be encountered in the case of

challenge tests on surface of foods.

Last, it has to be underlined that these simulations

were based on pure theoretical distributions, not

contaminated with outliers. As mentioned earlier, it

is a known result that the robust regression is also

more adequate in the presence of outliers.
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3.3. Comparison of least-squares regression and ro-

bust regression on the basis of real growth curves

In this last step, Huber and least-squares estimators

were compared on the basis of three representative

growth curves (in crushed cold-smoked salmon or on

the surface of cold-smoked salmon slices) previously

presented in Fig. 1.

3.3.1. Regression procedure

Both methods were used to fit the experimental

growth curves, as described in Section 3.2.1. In the

presence of an (apparent) outlier in a curve, the ad-

justment was carried out twice by both methods,

firstly with all data points, and secondly after deleting

this outlier.

3.3.2. Regression results

Three typical examples are presented (Figs. 2–4).

These growth curves were carried out in crushed cold-

smoked salmon (Figs. 2 and 3) and on the surface of

cold-smoked salmon slices (Fig. 4). One of the

crushed salmon curves (Fig. 2) is in conformity with

the theoretical model (which was the case of the

majority of the curves carried out in this medium)

whereas the second one (Fig. 3) presents an outlier.

The surface curve (Fig. 4) presents also a potentially

aberrant point (at day 9), and large residual values for

most data points, which was representative of most

surface curves. For the first growth curve in crushed

cold-smoked salmon (Fig. 2), the Huber-estimator is

clearly less influenced by the last, higher point. For an

ideal curve, it is preferable to use standard least-
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Fig. 3. Growth curve in crushed cold-smoked salmon (see Fig. 1c):

Experimental data points (o), result of the least-squares regression:

fitted Baranyi model (–– ), result of the robust regression: fitted

Baranyi model (–), Result of the least-squares regression without

the outlier: fitted Baranyi model ( ), result of the robust regres-

sion without the outlier: fitted Baranyi model (– –).
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Fig. 2. Growth curve in crushed cold-smoked salmon (see Fig. 1b):

Experimental data points ( ), result of the least-squares regression:

fitted Baranyi model (–– ), result of the robust regression: fitted

Baranyi model (–).
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Fig. 4. Growth curve on the surface of cold-smoked salmon (see

Fig. 1d): Experimental data points (o), result of the least-squares

regression: fitted Baranyi model (–– ), result of the robust regression:
fitted Baranyi model (–), result of the least-squares regression

without the outlier: fitted Baranyi model ( ), result of the robust

regression without the outlier: fitted Baranyi model (– –).
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squares regression. Both methods are not equivalent,

however they lead to close results.

In the presence of an outlier (Figs. 3 and 4),

differences between both fits are more pronounced.

It is obvious that the robust regression is less influ-

enced by the outlier, as fits without or with the outlier

are much closer with the Huber criterion than with the

least-squares criterion. Then, the Huber robust regres-

sion appears more adapted in this case.

4. Discussion and recommendations

4.1. Reflections on the assumptions and related real-

ism underlying challenge tests

Challenge testing is a key element in model vali-

dation. Indeed, whatever their construction (based on

challenge tests, growth curves in broth, or both),

predictive models must be shown to predict accurately

the behaviour of micro-organisms in real foods or

during real food processes. This involves comparison

of predicted responses to observations in products

and/or processes, independent of those used to gener-

ate the model (Ross, 1996). Criteria have been pro-

posed for a quantitative validation (Ross, 1996;

Baranyi et al., 1999).

When validating broth-based models to predict

growth of the spoilage flora in foods, Pin et al.

(1999) introduced three levels of errors. They aimed

to reflect the increase in complexity of the system,

from broth to artificially contaminated foods, and

from artificially contaminated foods to naturally

spoiled foods.

Firstly, the primary error was defined as the dif-

ference between growth rates predicted by the model

(to be validated) and growth rates estimated from

growth curves in broth (either used to create the

model, or obtained in similar conditions). As stated

by the authors, this error includes the uncertainty

associated with the adjustment of the secondary

model. It also includes the uncertainty associated

with the adjustment of the primary model to obtain

the estimated growth rates, which is not negligible,

especially in the case of models based on challenge

tests.

Secondly, Pin et al. (1999) considered the differ-

ence between growth rates predicted by the model and

growth rates estimated in artificially contaminated

foods. It was named the intermediate error. As stated

by the authors, this error includes the primary error,

and (when the model is broth based) the influence of

the growth substrate. Indeed, the structure of the food

can affect microbial distribution and growth, due to

structural features of the aqueous phase relevant to the

microbial length scale (e.g. globules of milk fat in

hard cheese, droplets of aqueous phase within an outer

oil phase in margarine), see Brocklehurst (2003). This

intermediate error also includes the uncertainty asso-

ciated with the adjustment of a primary model to

obtain the estimated growth rates in the inoculated

food products.

As Pin and co-authors considered the total spoilage

flora, the artificially contaminated foods were sterile

foods inoculated by a controlled spoilage flora. The

authors of the present research want to stress that

when the micro-organism of interest is a pathogen,

two types of challenge tests can be considered: either

in sterile food products (or with a relatively low

spoilage level), or in competition with a naturally

occurring spoilage flora. In the latter case, the inter-

mediate error would also include the effect of the

microbial interactions, such as the Jameson effect

(Ross et al., 2000). Additional errors are certainly to

be considered at this step and may be different from

one study to another.

Thirdly, the overall error was defined by Pin et al.

(1999) as the error between predicted growth rates and

growth rates estimated in naturally spoiled foods

(storage trials). The overall error includes (i) the in-

termediate error, (ii) the errors due to the difference

between artificial and natural contamination, which is

discussed below, and (iii) the uncertainty associated

with the estimation of growth rates in storage trials,

which is a particularly complex question, not further

discussed in this paper.

The difference between artificial and natural con-

tamination is indeed an important issue. Even if every

effort is made to mimic realistic conditions (see

recommendations published in AFSSA, 2001; IFT,

2001; ICMSF, 2002; Brocklehurst, 2003), experimen-

tal bias may occur. The inoculated strains are not

always representative of the within-species variability;

non-pathogenic surrogates have even to be chosen

when the inoculation is performed in the food pro-

duction or processing environment. The level of con-
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tamination is usually unrealistically high, to allow

efficient plate-counting. Even in the presence of the

naturally occurring spoilage flora (non sterile foods),

the effect of microbial interactions between the stud-

ied micro-organism and other flora is then under-

estimated. The physiological state of the micro-organ-

ism (stress in the environment versus inoculum prep-

aration in the lab) has also to be considered even if it

is more crucial for the lag time than for the growth

rate. Last, the structure of the food and its aw might be

modified by the inoculation procedure and the prep-

aration of the food samples. Whereas naturally con-

taminated foods are typically not homogeneous, and

not homogeneously contaminated by the micro-organ-

ism of interest, homogeneity of both the contamina-

tion and the contaminated food should be obtained so

that the results of challenge tests are exploitable. A

compromise between realism and the potential for

data analysis should be reached.

The experimental choice between inoculation onto

surfaces or into the food is a crucial question, from

this point of view. Surface inoculation (by dip inocu-

lation, spray inoculation or spot inoculation) has been

widely used: on meat products, including wieners,

frankfurters and sausages (McKellar et al., 1994;

Islam et al., 2002a; Samelis et al., 2002; Taormina

and Beuchat, 2002; Naim et al., 2003); cooked ham

and pâté (Uyttendaele et al., 2004), sliced cooked

cured pork shoulder (Mataragas et al., 2003), chicken

luncheon meat (Islam et al., 2002b), and chicken

breast mince and chicken thigh burgers (Oscar,

2002); on cheeses (Jensen and Knöchel, 1995; Stec-

chini et al., 1995; Eppert et al., 1997; Loessner et al.,

2003); and on vegetables, including freshly peeled

oranges (Pao and Brown, 1998), and external surfaces

(rind) of cantaloupe (Ukuku and Fett, 2002). A major

interest of surface inoculation is to gain realism, as

some sources of contamination lead to surface con-

taminations. Moreover, it reduces the modification of

the structure of the food. However, such an inocula-

tion, which excludes any mixing step, appeared in the

present study as an important contribution to the

difficulty of exploiting challenge tests, as more (ap-

parent) outliers and higher RMSE values are obtained

in comparison with crushed food, and even more in

comparison with broth-based data. Once again, a

compromise has to be reached between realism and

interpretability of a challenge test.

4.2. Recommendations for fitting growth curves

obtained in and on food products

One of the main objectives of challenge testing is

to estimate growth parameters (especially the growth

rate), either to build a new secondary model or to

validate an existing one. Recommendations for this

step were rarely published, as far as we know.

Needless to say that careful use of non-linear re-

gression methods and software packages is an impor-

tant prerequisite. On the contrary, simple calculations

based on the difference between population densities

at two distant sampling times, which are still practiced

(AFSSA, 2001; FDA, 2003), are far less precise and

robust.

Among least-squares regression methods, the

most common choice is the least-squares regression,

which is implemented in all classical optimization/

statistical software. The least-squares solution is the

maximum likelihood solution if the errors are nor-

mally distributed, but it is not very good in han-

dling erroneous observations, since there is a high

penalty on large residual entries. As demonstrated in

Sections 2 and 3, the least-squares criterion can

appear ineffective for certain sets of data. Indeed,

for some growth curves (at least on the surface of

cold-smoked salmon, as shown in Section 2), the

errors can deviate from the assumption of normality.

In the same way, certain points of the experimental

curves appear suspect and may reflect measurement or

model uncertainty increasing when going from broth,

to crushed salmon and to the surface of cold-smoked

salmon slices. However, it would be incorrect to

delete these potentially aberrant points from the anal-

ysis without any statistical justification. If the previ-

ous experimental recommendations are carefully

followed, this problem might be minimized (but not

systematically avoided). For these reasons, we recom-

mend the use of robust non-linear regression to model

challenge tests in two important (and potentially

related) cases: when the inoculated samples are

potentially heterogeneous and heterogeneously con-

taminated (typically the case of surface inoculation),

and when the observation of the growth curve

reveals outliers. There seems to be a large corre-

spondence between the particular features of chal-

lenge tests (when compared to standard growth

curves in broth) and the optimal conditions of
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robust regression (when compared to standard least-

squares regression). Robust regression has to be

implemented using an appropriate software package.

In this study, it was implemented using Matlab, and

an example of a suitable Matlab-coding is available

upon request from the authors.

Despite all these precautions, it has to be clearly

stated that the estimation of a growth rate from data

obtained in a challenge test is never a perfectly precise

determination, but in most cases a gross estimation.

For this reason, we highly recommend giving the

confidence interval on each estimated growth param-

eter. Such confidence intervals can be obtained by

different methods, developed in the field of non-linear

regression (Huet et al., 1992, 1996; Van Impe et al.,

2001): standard errors (only approximative for non-

linear models), joint confidence regions, likelihood

methods. Resampling methods are also available:

Jackknife (Baty and Delignette-Muller, 2004), and

Bootstrap (Huet et al., 1992). Last, Monte Carlo

simulations based on the experimental error were

proposed by Poschet et al. (2003).

A promising way to decrease this estimation un-

certainty could be to use larger data sets. Whereas it

is of most common practice in food microbiology to

consider each growth curve separately, as it was

done in the present study, alternative approaches in

which several growth (or inactivation) curves are

fitted simultaneously have been proposed. These

approaches usually rely on the use of a global

model, made of a primary and a secondary model,

with fixed effects (Bernaerts et al., 2001, 2002,

Fernandez et al., 2002; Skandamis et al., 2002;

Valdramidis et al., 2005), random effects (Juneja

and Marks, 2002; Montañez et al., 2002; McCann

et al., 2003; Shorten et al., 2004), or hyperpara-

meters in a Bayesian approach (Pouillot et al.,

2003). These approaches appear promising in the

case of challenge tests, as they may allow for

much better overall estimation.
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