

Bundesinstitut für Risikobewertung

Plasmid-mediated colistin resistance in German *Salmonella enterica* strains isolated from livestock, food and the environment

Colistin and mcr mediated colistin resistance

colistin:

- cationic antimicrobial peptide
- interacts with lipid A in LPS
 → membrane disruption
- frequently used in animal production
- last resort antibiotic

mcr- mobile colistin resistance

 mediated by plasmid-encoded phosphoethanolamine transferases
 Addition of phosphoethanolamine to lipid A in the LPS layer results in reduced binding of colistin

Colistin and *mcr* **mediated colistin resistance**

mcr-1: the first described mobile colistin resistance gene

- discovered in *E. coli* and *K. pneumoniae* isolates from livestock, meat and patients in China
- transferable by horizontal gene transfer
- detected in more than ten Enterobacteriacea species
- globally distributed
- classified as major public health threat

Colistin and *mcr* **mediated colistin resistance**

First description of the respective *mcr* variants:

<i>mcr</i> variant	reference	date of publication	country	organism	source
mcr-1.1	Liu <i>et al.</i>	26.11.2015	China	E. coli K. pneumoniae	pigs, retail meat (chicken and pork), patients patients
<i>mcr-2.1</i>	Xavier et al.	07.07.2016	Belgium	E. coli	calves and piglets
<i>mcr-3.1</i>	Yin <i>et al.</i>	27.07.2017	China	E. coli	pigs
mcr-4.1	Carattoli <i>et al.</i>	03.08.2017	Italy	S. Typhimurium	pigs
			Spain & Belgium	E. coli	piglets
<i>mcr-5.1</i>	Borowiak et al.	18.09.2018	Germany	S. Paratyphi B dTa+	poultry and chicken meat
<i>mcr-6.1</i>	AbuOun <i>et al.</i>	11.08.2017	UK	M. pluranimalium	pigs
<i>mcr-7.1</i>	Yang <i>et al.</i>	01.07.2018	China	K. pneumoniae	chicken
<i>mcr-8.1</i>	Wang <i>et al.</i>	04.07.2018	China	K. pneumoniae	pigs and chicken

Study on 86 colistin resistant German Salmonella Paratyphi B dTa+ isolates (2011-2016)

• 12/32 *mcr-1-4* negative isolates showed a unique resistance profile:

AMP, CIP, COL, NAL, SMX, STR, TET, TMP

one isolate (13-SA01718) was selected for sequencing

page 5

MCR-1 MCR-2 MCR-3 MCR-4 MCR-5	MMQHTSVWYRRSVSPFVLVASVAVFLTATANLTFFDKISQTYPIADNLGFVLTI -MTSHHSWYRYSINPFVLMGLVALFLAATANLTFFEKAMAVYPVSDNLGFIISM MPSLIKIKIVPLMFFLALYPAFMLNMRGVLHFYEILYKLEDFKFGFAISL MISRFKTLSVNQFTFITALFYVAIFNLPLFGIVRKGIEKQPEVDPLFIASM -MRLSAFITFLKMRPQVRTEFLTLFISLVFTLLCNGVFWNALLAGRDSLTSGTWL-MLLC .: :::::::::::::::::::::::::::::::::::	54 53 50 51 58
MCR-1 MCR-2 MCR-3 MCR-4 MCR-5	AVVLFGAMLLITTLLSSYRYVLKPVLILLLIMGAVTSYFTDTYGTVYDTTMLQNALQTDQ AVAVMGAMLLIVV-LSYRYVLKPVLILLIMGAVTSYFTDTYGTVYDTTMLQNAMQTDQ PILLVAA-LNFVFVPFSIRYLIKPFFALLIALSAIVSYTMMKYRVLFDQNMIQNIFETNQ PLFLTFA-LSFLFSIFTVKYLLKPFFIVLTLLSSSVFFAAYQYNVVFDYGMIENTFQTHP TGLLITGLQWLLLLVATRWSVKPLLILLAVMTPAAVYFMRNYGVYLDKAMLRNLMETDV : : : : : : : : : : : : : : : : : : :	114 112 109 110 118
MCR-1 MCR-2 MCR-3 MCR-4 MCR-5	AETKDLLNAAFIMRIIGLGVLPSLLVAFVKVDYPT-WGKGLMRRLGLIVASLALILLPVV AESKOLMNLAFFVRIIGLGVLPSVLVAVAKVNYPT-WGKGLIQRAMTWGVSLVLLVPIG NEALAYLSLPIIVWVTIAGFIPAILLFFVEIEYEEKWFKGILTRALSMFASLIVIAVIA AEALMYVNLASITNLLITGLLPSYLIYKADIHVQP-FFKELLHKLAFMLLMFVGIGIVAF REASELLQWRMLPYLLV-AAVSVWWIARVRVLRTG-WKQAVMMRSACLAGALAMISMGLW *:	173 171 169 169 176
MCR-1 MCR-2 MCR-3 MCR-4 MCR-5	AFSSHYASFFRVHKPLRSYVNPIMPIYSVGKLASIEYKKASAPKDTIYHAKDAVQATKPD LFSSQYASFFRVHKPVRFYINPITPIYSVGKLASIEYKKATAPTDTIYHAKDAVQTTKPS LYYQDYVSVGRNNSNLQREIVPANFVNSTVKYVYNRYLAEPIFFTIGDDAKRASRNP FYYQDYAAFVRNNSELRRYIVPTFVSSASKVLNEHYLQFTPMEYQUGLDAKNASRNP PVMDVLIPTLRENKPLRYLITPANYVISGIRVLT-EQASSSADEAREVVAADAHRGPQEQ * **	233 231 225 227 235
MCR-1 MCR-2 MCR-3 MCR-4 MCR-5	MRKPRLVVFVVGETARADHVSFNGYERDTFPQLAKIDGVTNFSNVTSCGTSTAYSVPCMF ERKPRLVVFVVGETARADHVQFNGYGRETTPQLAKVDGLANFSQVTSCGTSTAYSVPCMF QSKPTLMFLVVGETARGKNFSMNGYEKDTNPFTSKSGGVISFNDVRSCGTATAVSVPCMF NTKPNLLVVVVGETARSMSYQYYGYNKPTNAHT-QNGGLIAFNDTSSCGTATAVSJPCMF GRRPRALVLVVVGETVRAANWGLSGYERQTTPELAAR-DVINFSDVTSCGTDTATSLPCMF : * ***** ** ** ** ** ** ** *****	293 291 285 286 294
MCR-1 MCR-2 MCR-3 MCR-4 MCR-5	SYLGADEYDVDTAKYQENVLDTLDRLGVSILWRDNNSDSKGVMDKLPKAQFADYKSATNN SYLGQDDYDVDTAKYQENVLDTLDRLGVGILWRDNNSDSKGVMDKLPATQYFDYKSATNN SNMGRKEFDDNRARNSEGLLDVLQKTGISIFWKENDGGCKGVCDRVPNIEIEPKDHP SMMGRADYDPRRANAQDTVIDVLSHSGIKVQWFDNDSGCKGVCDQLPKNITIDLKSDP SLNGRRDYDERQIRRESVLHVLNRSDVNILWRDNQSGCKGVCDGLPFENLSSAGHP * * ::* ::*:	353 351 342 343 351
MCR-1 MCR-2 MCR-3 MCR-4 MCR-5	AICNTNPYNECRDVGMLVGLDDFVAANNGKDMLIMLHQMGNHGPAYFKRYDEKFAKFTPV TICNTNPYNECRDVGMLVGLDDVVAANNGKDMLIMLHQMGNHGPAYFKRYDEQFAKFTPV KFCDKNTCYDEVVLQDLDSEIAQMK-GDKLVGFHLIGSHGPTYYKRYDPAHRQFTPD KLCSGQYCFDQVLLNKLDKILAVAPSQDTVIFLHIGSHGPTYYLRYPPHRKFIPD TLCHGERCLDEILLEGLAEKIT-TSRSDMLIVLHMLGNHGPAYFQRYPASYRRWSPT :* : * * :* * .:: * :: * :: * :* :* :* :* :*	413 411 398 400 407
MCR-1 MCR-2 MCR-3 MCR-4 MCR-5	CEGNELAKCEHQSLINAYDNALLATDDFIAQSIQWLQTHSNAYDVSMLYVSDHGESLGEN CEGNELAKCEHQSLINAYDNALLATDDFIAQSIQWLQTHSNAYDVSMLYVSDHGESLGEN CPRSDIENCTDEELTNTYDNTIRYTDFVIGEMIAKLKTYEDKYNTALLVVSDHGESLGEL CPRSDIQNCSQEELINTYDNTILYTDFILSEVVNKLKGKQDMFDTAMLYLSDHGESLGEK CDTTDLASCSHEALVNTYDNAVLYTDHVLARTIDLLSGI-RSHDTALLVVSDHGESLGEK * * * *:***: ** * *.	473 471 458 460 466
MCR-1 MCR-2 MCR-3 MCR-4 MCR-5	GVYLHGMPNAFAPKEQRSVPAFFWTDKQTGITPMATDTVLTHDAITPTLLK GVYLHGMPNAFAPKEQRAVPAFFWSNNTTFKPTASDTVLTHDAITPTLLK GLYLHGTPYQFAPDQTRVPMQVMMSPGFTKEKGVDMACLQQKAADTRYSHDNIFSSVLG GMYLHGAPYSIAPKEQTSVPMLAWSSNDFSQDNQLNMTCVAQRAEQGGFSHDNLFDSLLG GLYLHGIPYVIAPDEQIKVPMIWWQSSQVYADQACMQTHASRAPVSHDHLFHTLLG *:**** * :**::* ** ::* ::*	524 521 518 520 522
MCR-1 MCR-2 MCR-3 MCR-4 MCR-5	LFDVTADKVKDRTAFIR 541 LFDVTAGKVKDRAAFIQ 538 IWDVKTSVVEKGLDIF\$QCRNVQ 541 LMNVKTTVYQSQLDIF\$QCRNVQ 541 MPDVKTAAYTPELDLLATCRKGQPQ 547 : :*.: ::	

MCR-5 characteristics:

- 1,644 bp; 547 amino acids
- amino acids identity: MCR-1: 36.11% MCR-2: 35.29% MCR-3: 34.72% MCR-4: 33.71%
- SMART protein domain structure:
 - transmembrane domain
 - domain of unknown function
 - sulfatase domain
- conserved residues for colistin resistance: E248, T286, H389, D458 and H459

Study on 86 colistin resistant German Salmonella Paratyphi B dTa+ isolates (2011-2016)

page 8 **Fr BfR**

S1-PFGE, Southern Blot & Hybridization

- in Salmonella Paratyphi B dTa+ mcr-5 is harbored by ColE-like plasmids and associated with a Tn3 family transposon (Tn6452)
- Tn6452 integration in the bacterial chromosome was observed

J Antimicrob Chemother 2017; **72**: 3317–3324 doi:10.1093/jac/dkx327 Advance Access publication 18 September 2017 Journal of Antimicrobial Chemotherapy

page 10

Identification of a novel transposon-associated phosphoethanolamine transferase gene, *mcr-5*, conferring colistin resistance in *d*-tartrate fermenting *Salmonella enterica* subsp. *enterica* serovar Paratyphi B

Maria Borowiak¹, Jennie Fischer¹, Jens A. Hammerl¹, Rene S. Hendriksen², Istvan Szabo¹ and Burkhard Malorny^{1*}

¹German Federal Institute for Risk Assessment, BfR, Department for Biological Safety, Berlin, Germany; ²National Food Institute, Technical University of Denmark, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and European Union Reference Laboratory for Antimicrobial Resistance, Kgs Lyngby, Denmark

Screening on 360 additional colistin resistant *Salmonella* isolates (2011-2018)

mcr-5 PCR screening

9 additional *mcr-5* positive isolates:

2x Salmonella sp.
4x Salmonella Typhimurium
3x Salmonella Typhimurium monophasic

page 11

T BFR

mcr-5 plasmid diversity in *Salmonella* Typhimurium

page 12

RFR

mcr-5 mobility associated with conjugative plasmids

pSE13-SA02717

Salmonella

E. coli K12 J53

page 13

BfR

pSE13-SA01718-like

mcr-5 mobility associated with Tn6452 and putative mobile insertion cassettes

mcr-5 located on Tn6452

page 14

mcr-5 located on a mobile insertion cassette

Global distribution of *mcr-5*

Organisms harboring *mcr-5*:

Publications:

Salmonella enterica Escherichia coli Pseudomonas aeruginosa Aeromonas hydrophila

Blast:

Pigmentiphaga sp. Cupriavidus gilardii

Countries reporting *mcr-5*

based on Publications, NCBI Genbank & Pathogen Isolate Browser, 21.03.2019

Prevalence of mcr genes in German Salmonella isolates

Multiplex PCR screening on 446 colistin resistant Salmonella isolates

- *mcr-1* to *mcr-5* multiplex PCR by Rebelo *et al.* 2018
- *mcr-6* to *mcr-8* multiplex PCR by Borowiak *et al.* (unpublished)

Distribution of *mcr* genes in *Salmonella* isolates over the years

Prevalence of mcr genes in German Salmonella isolates

Multiplex PCR screening on 446 colistin resistant Salmonella isolates

- mcr-1 to mcr-5 multiplex PCR by Rebelo et al. 2018
- mcr-6 to mcr-8 multiplex PCR by Borowiak et al. (unpublished)

Distribution of *mcr* genes in different *Salmonella* serovars

page 17

Prevalence of mcr genes in German Salmonella isolates

Multiplex PCR screening on 446 colistin resistant Salmonella isolates

- mcr-1 to mcr-5 multiplex PCR by Rebelo et al. 2018
- *mcr-6* to *mcr-8* multiplex PCR by Borowiak *et al.* (unpublished)

Isolation sources of *mcr* harboring *Salmonella* isolates

Summary

- colistin resistant Salmonella isolates from animals, livestock and food in Germany harbor mcr-1 (46.2 %), mcr-4 (13.0 %) or mcr-5 (5.2 %) genes
- mcr positive Salmonella enterica were mainly isolated from pig and poultry production, but can be also found in cattle as well as pet animals
- *mcr* genes can be found in more than 9 different Salmonella enterica serovars including S. Typhimurium and S. Paratyphi B dTa+
- sequencing of selected *mcr* positive isolates is planned
- 23 mcr-5 positive isolates were analyzed using WGS:
 - 5 different mcr-5 harboring plasmids were described
 - one plasmid was **conjugative** and another plasmid could be co-mobilized in conjugation studies
 - mcr-5 was either located on a transposon (Tn6452) or a putative mobile insertion cassette
 - in three isolates **integration of Tn6452 in the bacterial chromosome** was observed

Acknowledgment

German Federal Institute for Risk Assessment

Unit 4SZ PD Dr. Burkhard Malorny Dr. Carlus Deneke Dr. Simon Tausch Dr. Josephine Grützke Beatrice Baumann Katharina Thomas **Unit 42:** Dr. Jennie Fischer Dr. Istvan Szabo

Unit 43 Dr. Jens A. Hammerl

Bundesinstitut für Risikobewertung

ENGAGE

mcr-5 in *Salmonella* Paratyphi B *d*Ta+:

This work is part of the ENGAGE project and cofunded by the German Federal Institute for Risk Assessment (BfR) and the European Food Safety Authority (EFSA).

Disclaimer: The conclusions, findings and opinions expressed in this presentation reflect only the view of the authors and not the official position of the European Food Safety Authority.

Bundesinstitut für Risikobewertung

Thank you for your attention

German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 • 10589 Berlin, GERMANY Phone +49 30 - 184 12 - 0 • Fax +49 30 - 184 12 – 99 0 99 bfr@bfr.bund.de • www.bfr.bund.de/en